Skip to main content

Advertisement

Log in

Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Internal tandem duplication in the FLT3 gene (FLT3/ITD), which is found in patients with acute myeloid leukemia (AML), causes resistance to FLT3 inhibitors. We found that RUNX1, a transcription factor that regulates normal hematopoiesis, is up-regulated in patients with FLT3/ITD+ AML. While RUNX1 can function as a tumor suppressor, recent data have shown that RUNX1 is required for AML cell survival. In the present study, we investigated the functional role of RUNX1 in FLT3/ITD signaling. FLT3/ITD induced growth factor-independent proliferation and impaired G-CSF mediated myeloid differentiation in 32D hematopoietic cells, coincident with up-regulation of RUNX1 expression. Silencing of RUNX1 expression significantly decreased proliferation and secondary colony formation, and partially abrogated the impaired myeloid differentiation of FLT3/ITD+ 32D cells. Although the number of FLT3/ITD+ 32D cells declined after incubation with the FLT3/ITD inhibitor AC220, the cells became refractory to AC220, concomitant with up-regulation of RUNX1. Silencing of RUNX1 abrogated the emergence and proliferation of AC220-resistant FLT3/ITD+ 32D cells in the presence of AC220. Our data indicate that FLT3/ITD deregulates cell proliferation and differentiation and confers resistance to AC220 by up-regulating RUNX1 expression. These findings suggest an oncogenic role for RUNX1 in FLT3/ITD+ cells and that inhibition of RUNX1 function represents a potential therapeutic strategy in patients with refractory FLT3/ITD+ AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3:650–65.

    Article  PubMed  CAS  Google Scholar 

  2. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    Article  PubMed  CAS  Google Scholar 

  3. Swords R, Freeman C, Giles F. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia. 2012;26:2176–85.

    Article  PubMed  CAS  Google Scholar 

  4. Williams AB, Nguyen B, Li L, Brown P, Levis M, Leahy D, et al. Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors. Leukemia. 2013;27:48–55.

    Article  PubMed  CAS  Google Scholar 

  5. Kampa-Schittenhelm KM, Heinrich MC, Akmut F, Dohner H, Dohner K, Schittenhelm MM. Quizartinib (AC220) is a potent second generation class III tyrosine kinase inhibitor that displays a distinct inhibition profile against mutant-FLT3, -PDGFRA and -KIT isoforms. Mol Cancer. 2013;12:19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114:2984–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Weisberg E, Sattler M, Ray A, Griffin JD. Drug resistance in mutant FLT3-positive AML. Oncogene. 2010;29:5120–34.

    Article  PubMed  CAS  Google Scholar 

  9. Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120:2142–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, Konopleva M, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015;125:3236–45.

    Article  PubMed  CAS  Google Scholar 

  11. Kiyoi H. Flt3 Inhibitors: recent Advances and Problems for Clinical Application. Nagoya J Med Sci. 2015;77:7–17.

    PubMed  PubMed Central  Google Scholar 

  12. Grunwald MR, Levis MJ. FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol. 2013;97:683–94.

    Article  PubMed  CAS  Google Scholar 

  13. Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004;103:1883–90.

    Article  PubMed  CAS  Google Scholar 

  14. Zheng R, Friedman AD, Small D. Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations. Blood. 2002;100:4154–61.

    Article  PubMed  CAS  Google Scholar 

  15. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115:2159–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Mangan JK, Speck NA. RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog. 2011;16:77–91.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2002;2:502–13.

    Article  PubMed  CAS  Google Scholar 

  18. Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M, et al. Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells. 2007;25:2976–86.

    Article  PubMed  CAS  Google Scholar 

  19. Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, Littman DR, et al. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood. 2010;115:1610–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Nishimoto N, Arai S, Ichikawa M, Nakagawa M, Goyama S, Kumano K, et al. Loss of AML1/Runx1 accelerates the development of MLL-ENL leukemia through down-regulation of p19ARF. Blood. 2011;118:2541–50.

    Article  PubMed  CAS  Google Scholar 

  21. Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest. 2013;123:3876–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kilbey A, Terry A, Jenkins A, Borland G, Zhang Q, Wakelam MJ, et al. Runx regulation of sphingolipid metabolism and survival signaling. Cancer Res. 2010;70:5860–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J, et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell reports. 2013;3:116–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, et al. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis. 2009;43:12–9.

    Article  PubMed  CAS  Google Scholar 

  25. Fukuda S, Singh P, Moh A, Abe M, Conway EM, Boswell HS, et al. Survivin mediates aberrant hematopoietic progenitor cell proliferation and acute leukemia in mice induced by internal tandem duplication of Flt3. Blood. 2009;114:394–403.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Onishi C, Mori-Kimachi S, Hirade T, Abe M, Taketani T, Suzumiya J, et al. Internal tandem duplication mutations in FLT3 gene augment chemotaxis to Cxcl12 protein by blocking the down-regulation of the Rho-associated kinase via the Cxcl12/Cxcr4 signaling axis. J Biol Chem. 2014;289:31053–65.

    Article  CAS  Google Scholar 

  27. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  28. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99:310–8.

    Article  PubMed  CAS  Google Scholar 

  30. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Waalwijk Barjesteh, van Doorn-Khosrovani S, Boer JM, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350:1617–28.

    Article  PubMed  CAS  Google Scholar 

  31. Majeti R, Becker MW, Tian Q, Lee TL, Yan X, Liu R, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci USA. 2009;106:3396–401.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Valtieri M, Tweardy DJ, Caracciolo D, Johnson K, Mavilio F, Altmann S, et al. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immunol. 1987;138:3829–35.

    PubMed  CAS  Google Scholar 

  33. Pekova S, Ivanek R, Dvorak M, Rueggeberg S, Leicht S, Li X, et al. Molecular variability of FLT3/ITD mutants and their impact on the differentiation program of 32D cells: implications for the biological properties of AML blasts. Leuk Res. 2009;33:1409–16.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Yazaki Y, et al. An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. Leukemia. 1997;11(Suppl 3):299–302.

    PubMed  Google Scholar 

  35. Mead AJ, Kharazi S, Atkinson D, Macaulay I, Pecquet C, Loughran S, et al. FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors. Cell reports. 2013;3:1766–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Cameron ER, Neil JC. The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene. 2004;23:4308–14.

    Article  PubMed  CAS  Google Scholar 

  37. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011;117:2348–57.

    Article  PubMed  CAS  Google Scholar 

  38. Naoe T, Kiyoi H. Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol. 2013;97:165–74.

    Article  PubMed  CAS  Google Scholar 

  39. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA. 2009;106:12031–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia. 2003;17:2249–50.

    Article  PubMed  CAS  Google Scholar 

  41. Roumier C, Fenaux P, Lafage M, Imbert M, Eclache V, Preudhomme C. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia. 2003;17:9–16.

    Article  PubMed  CAS  Google Scholar 

  42. Mikhail FM, Serry KA, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, et al. AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia. 2002;16:658–68.

    Article  PubMed  CAS  Google Scholar 

  43. Niini T, Vettenranta K, Hollmen J, Larramendy ML, Aalto Y, Wikman H, et al. Expression of myeloid-specific genes in childhood acute lymphoblastic leukemia: a cDNA array study. Leukemia. 2002;16:2213–21.

    Article  PubMed  CAS  Google Scholar 

  44. Blyth K, Cameron ER, Neil JC. The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer. 2005;5:376–87.

    Article  PubMed  CAS  Google Scholar 

  45. Ferrari N, Mohammed ZM, Nixon C, Mason SM, Mallon E, McMillan DC, et al. Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer. PLoS ONE. 2014;9:e100759.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 2013;97:726–34.

    Article  PubMed  CAS  Google Scholar 

  47. Cai X, Gaudet JJ, Mangan JK, Chen MJ, De Obaldia ME, Oo Z, et al. Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS ONE. 2011;6:e28430.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research support funds from the Grant-in-Aid for Scientific Research (20390298 and 25461593 to S.F.) and a Grant-in-Aid for Young Investigators (15K19616 to T.H.) from the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiro Hirade or Seiji Fukuda.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirade, T., Abe, M., Onishi, C. et al. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells. Int J Hematol 103, 95–106 (2016). https://doi.org/10.1007/s12185-015-1908-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1908-8

Keywords

Navigation