Skip to main content

Advertisement

Log in

Functional abnormalities and changes in gene expression in fibroblasts and macrophages from the bone marrow of patients with acute myeloid leukemia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

In bone marrow malignancies, little is known about the fate of stromal cells after replacement of normal cells by neoplastic hematopoietic ones. In this study, fibroblasts from patients with acute myeloid leukemia or myelodysplastic syndromes exhibited a significantly lower ability to support hematopoiesis originating from co-cultured allogeneic CD34-positive cells than did fibroblasts from healthy marrow. Conversely, macrophages from acute myeloid leukemia marrow significantly enhanced the production of blood cells compared with control macrophages. Aberrant function was associated with consistent changes in the expression of genes involved in hematopoietic stem cell control, such as cytokines and regulators of the Wnt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6:93–106.

    Article  CAS  PubMed  Google Scholar 

  2. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood. 2009;114:1150–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dührsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 1996;73:53–70.

    Article  PubMed  Google Scholar 

  5. Keating A. Biology of acute myeloid leukaemia: the role of stroma. Hematology (Am Soc Hematol Educ Prog). 2002; 73–9.

  6. Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia. 2009;23:2233–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tabe Y, Konopleva M. Advances in understanding the leukaemia microenvironment. Br J Haematol. 2014;164:767–78.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91:335–44.

    Article  CAS  PubMed  Google Scholar 

  9. Strobel ES, Gay RE, Greenberg PL. Characterization of the in vitro stromal microenvironment of human bone marrow. Int J Cell Cloning. 1986;4:341–56.

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74:1563–70.

    CAS  PubMed  Google Scholar 

  11. Spooncer E, Eliason J, Dexter TM. Long-term mouse bone marrow cultures. In: Testa NG, Molineux G, editors. Haemopoiesis. A practical approach. Oxford: Oxford University Press; 1993. p. 55–73.

  12. Coutinho LH, Gilleece MH, de Wynter EA, Will A, Testa NG. Clonal and long-term cultures using human bone marrow. In: Testa NG, Molineux G, editors. Haemopoiesis. A practical approach. Oxford: Oxford University Press; 1993. p. 75–106.

  13. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46:3349–60.

    Article  PubMed  Google Scholar 

  14. Michalopoulos E, Knight RL, Korossis S, Kearney JN, Fisher J, Ingham E. Development of methods for studying the differentiation of human mesenchymal stem cells under cyclic compressive strain. Tissue Eng Part C Methods. 2012;18:252–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sutherland HJ, Eaves CJ, Lansdorp PM, Thacker JD, Hogge DE. Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood. 1991;78:666–72.

    CAS  PubMed  Google Scholar 

  16. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH. An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood. 1989;74:2755–63.

    CAS  PubMed  Google Scholar 

  17. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  18. Owen M. Marrow stromal stem cells. J Cell Sci. 1988;10(suppl):63–76.

    Article  CAS  Google Scholar 

  19. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Knieling G, Vohwinkel G, Martinez T, Kuse R, Hossfeld DK, Dührsen U. Origin of stroma cells in long-term bone marrow cultures from patients with acute myeloid leukemia. Ann Hematol. 1999;78:305–14.

    Article  CAS  PubMed  Google Scholar 

  21. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.

    Article  CAS  PubMed  Google Scholar 

  22. Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M, Trivett M, Thompson ER, Ramakrishna M, Gorringe KL, Polyak K, Haviv I, Campbell IG. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 2008;40:650–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hu M, Yao J, Cai L, Bachman KE, van den Brûle F, Velculescu V, Polyak K. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet. 2005;37:899–905.

    Article  CAS  PubMed  Google Scholar 

  24. Ortmann CA, Eisele L, Nückel H, Klein-Hitpass L, Führer A, Dührsen U, Zeschnigk M. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008;87:809–18.

    Article  CAS  PubMed  Google Scholar 

  25. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landén M, Höglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Grönberg H, Hultman CM, McCarroll SA. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014;28:485–96.

    Article  CAS  PubMed  Google Scholar 

  28. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 2002;99:12877–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schümann E, Thiel E, Blau IW. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 2007;35:221–9.

    Article  CAS  PubMed  Google Scholar 

  31. Blau O, Baldus CD, Hofmann WK, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, Molkentin M, Mundlos S, Keilholz U, Thiel E, Blau IW. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood. 2011;118:5583–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Flores-Figueroa E, Arana-Trejo RM, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res. 2005;29:215–24.

    Article  CAS  PubMed  Google Scholar 

  33. Greenberger JS, Fitzgerald TJ, Klassen V, Anklesaria P, Bushnell D, Kase K, Sakakeeny MA. Alteration in hematopoietic stem cell seeding and proliferation by both high and low dose rate irradiation of bone marrow stromal cells in vitro. Int J Radiat Oncol Biol Phys. 1988;14:85–94.

    Article  CAS  PubMed  Google Scholar 

  34. Bierkens JG, Hendry JH, Testa NG. The radiation response and recovery of bone marrow stroma with particular reference to long-term bone marrow cultures. Eur J Haematol. 1989;43:95–107.

    Article  CAS  PubMed  Google Scholar 

  35. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4:839–49.

    Article  CAS  PubMed  Google Scholar 

  36. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  37. Liu YJ, Lu SH, Xu B, Yang RC, Ren Q, Liu B, Li B, Lu M, Yan FY, Han ZB, Han ZC. Hemangiopoietin, a novel human growth factor for the primitive cells of both hematopoietic and endothelial cell lineages. Blood. 2004;103:4449–56.

    Article  CAS  PubMed  Google Scholar 

  38. Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate. Blood. 2008;111:492–503.

    Article  CAS  PubMed  Google Scholar 

  39. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2:274–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Staal FJ, Luis TC. Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem. 2010;109:844–9.

    CAS  PubMed  Google Scholar 

  41. Renström J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A, Kröger M, Schiemann M, Busch DH, Esposito I, Lang R, Peschel C, Oostendorp RA. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell. 2009;5:157–67.

    Article  PubMed  Google Scholar 

  42. Choong ML, Yong YP, Tan AC, Luo B, Lodish HF. LIX: a chemokine with a role in hematopoietic stem cells maintenance. Cytokine. 2004;25:239–45.

    Article  CAS  PubMed  Google Scholar 

  43. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  CAS  PubMed  Google Scholar 

  44. Bruns I, Cadeddu RP, Brueckmann I, Fröbel J, Geyh S, Büst S, Fischer JC, Roels F, Wilk CM, Schildberg FA, Hünerlitürkoglu AN, Zilkens C, Jäger M, Steidl U, Zohren F, Fenk R, Kobbe G, Brors B, Czibere A, Schroeder T, Trumpp A, Haas R. Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells. Blood. 2012;120:2620–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, Lacombe J, Armstrong SA, Dührsen U, Frenette PS. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014;15:365–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Dührsen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dürig, J., Göbel, M. et al. Functional abnormalities and changes in gene expression in fibroblasts and macrophages from the bone marrow of patients with acute myeloid leukemia. Int J Hematol 102, 278–288 (2015). https://doi.org/10.1007/s12185-015-1833-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-015-1833-x

Keywords

Navigation