Skip to main content
Log in

Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk

  • Lipids (J Ordovas and L Parnell, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Long-chain polyunsaturated fatty acids (PUFAs) are important structural components of cellular membranes and are converted into eicosanoids which serve various biological roles. The most common dietary n-6 and n-3 PUFAs are linoleic acid and α-linoleic acid, respectively. These 18-carbon chain fatty acids undergo a series of desaturation and elongation steps to become the 20-carbon fatty acids arachidonic acid and eicosapentaenoic acid, respectively. Evidence from genome-wide association studies has consistently demonstrated that plasma and tissue levels of the n-6 long-chain PUFA arachidonic acid and to a lesser extent the n-3 long-chain PUFA eicosapentaenoic acid are strongly influenced by variation in fatty acid desaturase-1,-2, and elongation of very long-chain fatty acid genes. Studies of functional variants in these genes, as well as studies in which desaturase activity has been indirectly estimated by fatty acid product-to -precursor ratios, have suggested that endogenous capacity to synthesize long-chain PUFAs may be associated with metabolic diseases such as diabetes mellitus. Interventional studies are starting to tease out the complicated relationship between dietary intakes of specific fatty acids, variation in desaturase and elongase genes and tissue levels of long-chain PUFAs. Thus, future studies of dietary PUFA interventions designed to reduce inflammatory and metabolic diseases will need to carefully consider how an individual’s genetically determined endogenous long-chain PUFA synthesis capacity might modify therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kris-Etherton PM et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 2000;71(1 Suppl):179S–88.

    PubMed  CAS  Google Scholar 

  2. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–76.

    PubMed  CAS  Google Scholar 

  3. Marquardt A et al. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 2000;66(2):175–83.

    PubMed  CAS  Google Scholar 

  4. Harris WS et al. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients. Prostaglandins Leukot Essent Fat Acids. 2013;88(4):257–63. This study is the largest study to date that has measured erythrocyte membrane phospholipid fatty acids and described age- and gender-based norms.

    CAS  Google Scholar 

  5. Burdge G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7(2):137–44.

    PubMed  CAS  Google Scholar 

  6. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83(6 Suppl):1467S–76.

    PubMed  CAS  Google Scholar 

  7. Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab. 2007;32(4):619–34.

    PubMed  CAS  Google Scholar 

  8. Hussein N et al. Long-chain conversion of [13C]linoleic acid and alpha-linolenic acid in response to marked changes in their dietary intake in men. J Lipid Res. 2005;46(2):269–80.

    PubMed  CAS  Google Scholar 

  9. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther. 1999;83(3):217–44.

    PubMed  CAS  Google Scholar 

  10. Rett BS, Whelan J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review. Nutr Metab (Lond). 2011;8:36.

    CAS  Google Scholar 

  11. Demmelmair H et al. Comparison of bolus versus fractionated oral applications of [13C]-linoleic acid in humans. Eur J Clin Investig. 1999;29(7):603–9.

    CAS  Google Scholar 

  12. Lemaitre RN et al. Familial aggregation of red blood cell membrane fatty acid composition: the Kibbutzim Family Study. Metabolism. 2008;57(5):662–8.

    PubMed  CAS  Google Scholar 

  13. Malerba G et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43(4):289–99.

    PubMed  CAS  Google Scholar 

  14. Tanaka T et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5(1):e1000338.

    PubMed Central  PubMed  Google Scholar 

  15. Gieger C et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11):e1000282.

    PubMed Central  PubMed  Google Scholar 

  16. Illig T et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Suhre K et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.

    PubMed  CAS  Google Scholar 

  18. Kettunen J et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44(3):269–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Demirkan A et al. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet. 2012;8(2):e1002490.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Inouye M et al. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 2012;8(8):e1002907.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Lemaitre RN et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011;7(7):e1002193.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Hong MG et al. A genome-wide assessment of variability in human serum metabolism. Hum Mutat. 2013;34(3):515–24.

    PubMed  CAS  Google Scholar 

  23. Rzehak P et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr. 2009;101(1):20–6.

    PubMed  CAS  Google Scholar 

  24. Schaeffer L et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15(11):1745–56.

    PubMed  CAS  Google Scholar 

  25. Aslibekyan S et al. Genetic variation in fatty acid elongases is not associated with intermediate cardiovascular phenotypes or myocardial infarction. Eur J Clin Nutr. 2012;66(3):353–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Wu JH et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet. 2013;6(2):171–83. Very interesting study which identified common variants in genes associated with polyunsaturated fatty acid metabolisms to be associated with the de novolipogenesis pathway.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Merino DM, Ma DW, Mutch DM. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 2010;9:63.

    PubMed Central  PubMed  Google Scholar 

  28. Zietemann V et al. Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Br J Nutr. 2010;104(12):1748–59.

    PubMed  CAS  Google Scholar 

  29. Bokor S et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res. 2010;51(8):2325–33.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Vessby B et al. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat. Br J Nutr. 2013;110(5):871–9.

    PubMed  CAS  Google Scholar 

  31. Raatz SK et al. Total dietary fat and fatty acid content modifies plasma phospholipid fatty acids, desaturase activity indices, and urinary prostaglandin E in women. Nutr Res. 2012;32(1):1–7. Clinical trial that suggests that dietary fat content might influence desaturase activity and that low fat diets with or without fish oil may reduce prostaglandin E 2 production.

  32. Garg ML et al. Delta 6-desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or omega 3 fatty acids. Biochem J. 1988;249(2):351–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Alsaleh A et al. ELOVL2 gene polymorphisms are associated with increases in plasma eicosapentaenoic and docosahexaenoic acid proportions after fish oil supplement. Genes Nutr. 2014;9(1):362.

    PubMed Central  PubMed  Google Scholar 

  34. Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]alpha-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr. 2013;97(1):195–207.

    PubMed  CAS  Google Scholar 

  35. Warensjo E, Ohrvall M, Vessby B. Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis. 2006;16(2):128–36.

    PubMed  Google Scholar 

  36. Schiller K et al. Associated factors of estimated desaturase activity in the EPIC-Potsdam study. Nutr Metab Cardiovasc Dis. 2014;24(5):503–10.

    PubMed  CAS  Google Scholar 

  37. Greene ER et al. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Lipid Mediat. 2011;96(1–4):27–36.

    CAS  Google Scholar 

  38. Di Gennaro A, Haeggstrom JZ. The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol. 2012;116:51–92.

    PubMed  Google Scholar 

  39. Calder PC. Dietary modification of inflammation with lipids. Proc Nutr Soc. 2002;61(3):345–58.

    PubMed  CAS  Google Scholar 

  40. Wada M et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem. 2007;282(31):22254–66.

    PubMed  CAS  Google Scholar 

  41. Chilton FH et al. Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. J Clin Investig. 1993;91(1):115–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Gibney MJ, Hunter B. The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur J Clin Nutr. 1993;47(4):255–9.

    PubMed  CAS  Google Scholar 

  43. Healy DA et al. Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function. Lipids. 2000;35(7):763–8.

    PubMed  CAS  Google Scholar 

  44. Young LR et al. Effect of dietary fat and omega-3 fatty acids on urinary eicosanoids and sex hormone concentrations in postmenopausal women: a randomized controlled feeding trial. Nutr Cancer. 2011;63(6):930–9.

    PubMed  CAS  Google Scholar 

  45. Blair IA et al. Dietary modification of omega 6 fatty acid intake and its effect on urinary eicosanoid excretion. Am J Clin Nutr. 1993;57(2):154–60.

    PubMed  CAS  Google Scholar 

  46. Ferretti A et al. Effect of fish oil supplementation on the excretion of the major metabolite of prostaglandin E in healthy male subjects. Lipids. 1991;26(7):500–3.

    PubMed  CAS  Google Scholar 

  47. Zulyniak MA et al. Fish oil supplementation alters circulating eicosanoid concentrations in young healthy men. Metabolism. 2013;62(8):1107–13.

    PubMed  CAS  Google Scholar 

  48. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181–93.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. He C et al. Inhibiting delta-6 desaturase activity suppresses tumor growth in mice. PLoS One. 2012;7(10):e47567.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Global Lipids Genetics, C et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.

    Google Scholar 

  51. Teslovich TM et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Sabatti C et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41(1):35–46.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Kathiresan S et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Waterworth DM et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30(11):2264–76.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Solakivi T et al. Delta-6-desaturase gene polymorphism is associated with lipoprotein oxidation in vitro. Lipids Health Dis. 2013;12:80.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Stancakova A et al. Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes. 2011;60(5):1608–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Chasman DI et al. Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet. 2009;5(11):e1000730.

    PubMed Central  PubMed  Google Scholar 

  58. Reardon HT et al. Insertion-deletions in a FADS2 intron 1 conserved regulatory locus control expression of fatty acid desaturases 1 and 2 and modulate response to simvastatin. Prostaglandins Leukot Essent Fat Acids. 2012;87(1):25–33.

    CAS  Google Scholar 

  59. Barber MJ et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One. 2010;5(3):e9763.

    PubMed Central  PubMed  Google Scholar 

  60. Lu Y et al. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr. 2010;92(1):258–65.

    PubMed  CAS  Google Scholar 

  61. Hellstrand S. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012;53(6):1183–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Saito E et al. Abdominal adiposity is associated with fatty acid desaturase activity in boys: implications for C-reactive protein and insulin resistance. Prostaglandins Leukot Essent Fat Acids. 2013;88(4):307–11.

    CAS  Google Scholar 

  63. Martinelli N et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88(4):941–9.

    PubMed  CAS  Google Scholar 

  64. Hong SH et al. Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging. 2013;8:585–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Corpeleijn E et al. Improvements in glucose tolerance and insulin sensitivity after lifestyle intervention are related to changes in serum fatty acid profile and desaturase activities: the SLIM study. Diabetologia. 2006;49(10):2392–401.

    PubMed  CAS  Google Scholar 

  66. Enriquez YR et al. Fatty acid composition of erythrocyte phospholipids is related to insulin levels, secretion and resistance in obese type 2 diabetics on Metformin. Clin Chim Acta. 2004;346(2):145–52.

    PubMed  CAS  Google Scholar 

  67. Krachler B et al. Fatty acid profile of the erythrocyte membrane preceding development of type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2008;18(7):503–10.

    PubMed  CAS  Google Scholar 

  68. Murakami K et al. Lower estimates of delta-5 desaturase and elongase activity are related to adverse profiles for several metabolic risk factors in young Japanese women. Nutr Res. 2008;28(12):816–24.

    PubMed  CAS  Google Scholar 

  69. Sartore G et al. Desaturase activities and metabolic control in type 2 diabetes. Prostaglandins Leukot Essent Fat Acids. 2008;79(1–2):55–8.

    CAS  Google Scholar 

  70. Vessby B et al. Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci. 2002;967:183–95.

    PubMed  CAS  Google Scholar 

  71. Warensjo E et al. Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis. 2008;18(10):683–90.

    PubMed  Google Scholar 

  72. Warensjo E, Riserus U, Vessby B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia. 2005;48(10):1999–2005.

    PubMed  CAS  Google Scholar 

  73. Warensjo E et al. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009;8:37.

    PubMed Central  PubMed  Google Scholar 

  74. Zhou YE et al. Decreased activity of desaturase 5 in association with obesity and insulin resistance aggravates declining long-chain n-3 fatty acid status in Cree undergoing dietary transition. Br J Nutr. 2009;102(6):888–94.

    PubMed  CAS  Google Scholar 

  75. Nigam A et al. Relationship between n-3 and n-6 plasma fatty acid levels and insulin resistance in coronary patients with and without metabolic syndrome. Nutr Metab Cardiovasc Dis. 2009;19(4):264–70.

    PubMed  CAS  Google Scholar 

  76. Riserus U. Fatty acids and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2008;11(2):100–5.

    PubMed  CAS  Google Scholar 

  77. Wang L et al. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78(1):91–8.

    PubMed  CAS  Google Scholar 

  78. Berry EM. Dietary fatty acids in the management of diabetes mellitus. Am J Clin Nutr. 1997;66(4 Suppl):991S–7.

    PubMed  CAS  Google Scholar 

  79. Horrobin DF. Fatty acid metabolism in health and disease: the role of delta-6-desaturase. Am J Clin Nutr. 1993;57(5 Suppl):732S–6. discussion 736S-737S.

    PubMed  CAS  Google Scholar 

  80. Aro A. Fatty acid composition of serum lipids: is this marker of fat intake still relevant for identifying metabolic and cardiovascular disorders? Nutr Metab Cardiovasc Dis. 2003;13(5):253–5.

    PubMed  CAS  Google Scholar 

  81. Truong H et al. Does genetic variation in the Delta6-desaturase promoter modify the association between alpha-linolenic acid and the prevalence of metabolic syndrome? Am J Clin Nutr. 2009;89(3):920–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Steffen LM et al. Serum phospholipid and cholesteryl ester fatty acids and estimated desaturase activities are related to overweight and cardiovascular risk factors in adolescents. Int J Obes (Lond). 2008;32(8):1297–304.

    CAS  Google Scholar 

  83. Sjogren P et al. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia. 2008;51(2):328–35.

    PubMed  CAS  Google Scholar 

  84. Warensjo E et al. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am J Clin Nutr. 2006;84(2):442–8.

    PubMed  Google Scholar 

  85. Das UN. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fat Acids. 2005;72(5):343–50.

    CAS  Google Scholar 

  86. Lovejoy JC et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism. 2001;50(1):86–92.

    PubMed  CAS  Google Scholar 

  87. Lewis-Barned NJ et al. Plasma cholesteryl ester fatty acid composition, insulin sensitivity, the menopause and hormone replacement therapy. J Endocrinol. 2000;165(3):649–55.

    PubMed  CAS  Google Scholar 

  88. Pan DA et al. Skeletal muscle membrane lipid composition is related to adiposity and insulin action. J Clin Invest. 1995;96(6):2802–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Zabaneh D, Balding DJ. A genome-wide association study of the metabolic syndrome in Indian Asian men. PLoS One. 2010;5(8):e11961.

    PubMed Central  PubMed  Google Scholar 

  90. Manning AK et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659–69.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Dupuis J et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. Am J Clin Nutr. 2014;99(1):79–85.

    PubMed  CAS  Google Scholar 

  93. Hodge AM et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007;86(1):189–97.

    PubMed  CAS  Google Scholar 

  94. Kroger J et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr. 2011;93(1):127–42. This study finds an association between calculated desaturase activites and diabetes risks using product-to-precursor ratios but is notable for including a Mendelian Randomization approach to further support the causal relationship between desaturase activity and diabetes mellitus risk.

    PubMed  Google Scholar 

  95. Patel PS et al. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Am J Clin Nutr. 2010;92(5):1214–22.

    PubMed  CAS  Google Scholar 

  96. Westra H. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Cormier H et al. Polymorphisms in fatty acid desaturase (FADS) gene cluster: effects on glycemic controls following an omega-3 polyunsaturated fatty acids (PUFA) supplementation. Genes (Basel). 2013;4(3):485–98.

    Google Scholar 

  98. Norris JM et al. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young. Diabetologia. 2014;57(2):295–304.

    PubMed  CAS  Google Scholar 

  99. Baylin A et al. Alpha-Linolenic acid, Delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr. 2007;85(2):554–60.

    PubMed  CAS  Google Scholar 

  100. Li SW et al. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One. 2013;8(1):e55869.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Qin L et al. A case–control study between the gene polymorphisms of polyunsaturated fatty acids metabolic rate-limiting enzymes and coronary artery disease in a Chinese Han population. Prostaglandins Leukot Essent Fat Acids. 2011;85(6):329–33.

    CAS  Google Scholar 

  102. Lu Y et al. Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. PLoS One. 2012;7(7):e41681.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Cancer Institute (grants CA143288 and CA160938).

Compliance with Ethics Guidelines

Conflict of Interest

Harvey Murff received a grant from the NIH. Todd Edwards has no disclosures relating to this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey J. Murff.

Additional information

This article is part of the Topical Collection on Lipids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murff, H.J., Edwards, T.L. Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk. Curr Cardiovasc Risk Rep 8, 418 (2014). https://doi.org/10.1007/s12170-014-0418-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-014-0418-1

Keywords

Navigation