Skip to main content
Log in

Update on the Role of Adipokines in Atherosclerosis and Cardiovascular Diseases

  • Diabetes and Insulin Resistance (JB Meigs and M Rutter, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Adipose tissue is now considered an active hormone-secreting organ that produces a number of biologically active proteins called adipokines. “Classic” adipokines were discovered more than a decade ago; leptin was initially described as a satiety signal limiting food intake in animal models, whereas adiponectin is suspected to play a role in promoting insulin sensitivity. As adiposity increases, macrophages may infiltrate the adipose tissue. These macrophages are a source of many cytokines (tumor necrosis factor-α, interleukin-6, resistin, retinol binding protein-4) that are suspected to participate in low-grade proinflammatory processes leading to metabolic disorders, insulin resistance, and cardiovascular diseases. New adipokines, such as visfatin, vaspin and apelin, have recently been discovered but their exact roles are still unknown. This review focuses on recent updates regarding the contribution of adipokines in atherosclerosis or cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hotta K, Funahashi T, Arita Y, Takahashi M, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    PubMed  CAS  Google Scholar 

  2. • Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302:179–88. This is a comprehensive review of the literature on the association between adiponectin levels and type 2 diabetes.

    PubMed  CAS  Google Scholar 

  3. Karakas M, Zierer A, Herder C, Baumert J, et al. Leptin, adiponectin, their ratio and risk of Coronary Heart Disease: results from the MONICA/KORA Augsburg Study 1984–2002. Atherosclerosis. 2010;209:220–5.

    PubMed  CAS  Google Scholar 

  4. Zoccali C, Mallamaci F, Tripepi G, Benedetto FA, et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol. 2002;13:134–41.

    PubMed  CAS  Google Scholar 

  5. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291:1730–7.

    PubMed  CAS  Google Scholar 

  6. Costacou T, Zgibor JC, Evans RW, Otvos J, et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2005;48:41–8.

    PubMed  CAS  Google Scholar 

  7. Koenig W, Khuseyinova N, Baumert J, Meisinger C, Lowel H. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany. J Am Coll Cardiol. 2006;48:1369–77.

    PubMed  CAS  Google Scholar 

  8. Lim S, Koo BK, Cho SW, Kihara S, et al. Association of adiponectin and resistin with cardiovascular events in Korean patients with type 2 diabetes: the Korean atherosclerosis study (KAS): a 42-month prospective study. Atherosclerosis. 2008;196:398–404.

    PubMed  CAS  Google Scholar 

  9. Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun. 2004;315:264–71.

    PubMed  CAS  Google Scholar 

  10. Ouchi N, Kihara S, Arita Y, Okamoto Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296–301.

    PubMed  CAS  Google Scholar 

  11. Yang WS, Lee WJ, Funahashi T, Tanaka S, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86:3815–9.

    PubMed  CAS  Google Scholar 

  12. Lim S, Choi SH, Jeong IK, Kim JH, et al. Insulin-sensitizing effects of exercise on adiponectin and retinol binding protein-4 concentrations in young and middle-aged women. J Clin Endocrinol Metab. 2008;93:2263–8.

    PubMed  CAS  Google Scholar 

  13. Cambuli VM, Musiu MC, Incani M, Paderi M, et al. Assessment of adiponectin and leptin as biomarkers of positive metabolic outcomes after lifestyle intervention in overweight and obese children. J Clin Endocrinol Metab. 2008;93:3051–7.

    PubMed  CAS  Google Scholar 

  14. Riesco E, Choquette S, Audet M, Lebon J, Tessier D, Dionne IJ. Effect of exercise training combined with phytoestrogens on adipokines and C-reactive protein in postmenopausal women: a randomized trial. Metabolism. 2011.

  15. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    PubMed  CAS  Google Scholar 

  16. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    PubMed  CAS  Google Scholar 

  17. Sanchez-Margalet V, Martin-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11–9.

    PubMed  CAS  Google Scholar 

  18. Chen K, Li F, Li J, Cai H, et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med. 2006;12:425–32.

    PubMed  CAS  Google Scholar 

  19. Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension. 2001;37:936–42.

    PubMed  CAS  Google Scholar 

  20. Corsonello A, Perticone F, Malara A, De DD, et al. Leptin-dependent platelet aggregation in healthy, overweight and obese subjects. Int J Obes Relat Metab Disord. 2003;27:566–73.

    PubMed  CAS  Google Scholar 

  21. Knudson JD, Dincer UD, Zhang C, Swafford Jr AN, et al. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2005;289:H48–56.

    PubMed  CAS  Google Scholar 

  22. Li L, Mamputu JC, Wiernsperger N, Renier G. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005;54:2227–34.

    PubMed  CAS  Google Scholar 

  23. Sierra-Johnson J, Romero-Corral A, Lopez-Jimenez F, Gami AS, et al. Relation of increased leptin concentrations to history of myocardial infarction and stroke in the United States population. Am J Cardiol. 2007;100:234–9.

    PubMed  CAS  Google Scholar 

  24. Wallace AM, McMahon AD, Packard CJ, Kelly A, et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation. 2001;104:3052–6.

    PubMed  CAS  Google Scholar 

  25. Soderberg S, Ahren B, Jansson JH, Johnson O, et al. Leptin is associated with increased risk of myocardial infarction. J Intern Med. 1999;246:409–18.

    PubMed  CAS  Google Scholar 

  26. Piatti P, Di MC, Monti LD, Fragasso G, et al. Association of insulin resistance, hyperleptinemia, and impaired nitric oxide release with in-stent restenosis in patients undergoing coronary stenting. Circulation. 2003;108:2074–81.

    PubMed  CAS  Google Scholar 

  27. Paolisso G, Tagliamonte MR, Galderisi M, Zito GA, et al. Plasma leptin level is associated with myocardial wall thickness in hypertensive insulin-resistant men. Hypertension. 1999;34:1047–52.

    PubMed  CAS  Google Scholar 

  28. Leyva F, Anker SD, Egerer K, Stevenson JC, Kox WJ, Coats AJ. Hyperleptinaemia in chronic heart failure. Relationships with insulin. Eur Heart J. 1998;19:1547–51.

    PubMed  CAS  Google Scholar 

  29. Soderberg S, Ahren B, Stegmayr B, Johnson O, et al. Leptin is a risk marker for first-ever hemorrhagic stroke in a population-based cohort. Stroke. 1999;30:328–37.

    PubMed  CAS  Google Scholar 

  30. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    PubMed  CAS  Google Scholar 

  31. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    PubMed  CAS  Google Scholar 

  32. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol. 2005;25:2062–8.

    PubMed  CAS  Google Scholar 

  33. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–8.

    PubMed  CAS  Google Scholar 

  34. Hivert MF, Sullivan LM, Fox CS, Nathan DM, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab. 2008;93:3165–72.

    PubMed  CAS  Google Scholar 

  35. Zavaroni I, Numeroso F, Dongiovanni P, Ardigo D, et al. What is the contribution of differences in three measures of tumor necrosis factor-alpha activity to insulin resistance in healthy volunteers? Metabolism. 2003;52:1593–6.

    PubMed  CAS  Google Scholar 

  36. Doupis J, Rahangdale S, Gnardellis C, Pena SE, Malhotra A, Veves A. Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity (Silver Spring). 2011;19:729–35.

    CAS  Google Scholar 

  37. Jefferis BJ, Whincup PH, Welsh P, Wannamethee SG, et al. Circulating TNFalpha levels in older men and women do not show independent prospective relations with MI or stroke. Atherosclerosis. 2009;205:302–8.

    PubMed  CAS  Google Scholar 

  38. Welsh P, Lowe GD, Chalmers J, Campbell DJ, et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke. 2008;39:2226–30.

    PubMed  CAS  Google Scholar 

  39. Kablak-Ziembicka A, Przewlocki T, Sokolowski A, Tracz W, Podolec P. Carotid intima-media thickness, hs-CRP and TNF-alpha are independently associated with cardiovascular event risk in patients with atherosclerotic occlusive disease. Atherosclerosis. 2011;214:185–90.

    PubMed  CAS  Google Scholar 

  40. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1999;19:2364–7.

    PubMed  CAS  Google Scholar 

  41. Danesh J, Kaptoge S, Mann AG, Sarwar N, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008;5:e78.

    PubMed  Google Scholar 

  42. Li JJ, Zhang YP, Yang P, Zeng HS, et al. Increased peripheral circulating inflammatory cells and plasma inflammatory markers in patients with variant angina. Coron Artery Dis. 2008;19:293–7.

    PubMed  Google Scholar 

  43. Fernandez-Real JM, Vayreda M, Richart C, Gutierrez C, et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab. 2001;86:1154–9.

    PubMed  CAS  Google Scholar 

  44. Volpato S, Guralnik JM, Ferrucci L, Balfour J, et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women’s health and aging study. Circulation. 2001;103:947–53.

    PubMed  CAS  Google Scholar 

  45. Okopien B, Hyper M, Kowalski J, Belowski D, et al. A new immunological marker of atherosclerotic injury of arterial wall. Res Commun Mol Pathol Pharmacol. 2001;109:241–8.

    PubMed  CAS  Google Scholar 

  46. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.

    PubMed  CAS  Google Scholar 

  47. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209–14.

    PubMed  CAS  Google Scholar 

  48. Xing Z, Gauldie J, Cox G, Baumann H, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101:311–20.

    PubMed  CAS  Google Scholar 

  49. Liao HS, Matsumoto A, Itakura H, Doi T, et al. Transcriptional inhibition by interleukin-6 of the class A macrophage scavenger receptor in macrophages derived from human peripheral monocytes and the THP-1 monocytic cell line. Arterioscler Thromb Vasc Biol. 1999;19:1872–80.

    PubMed  CAS  Google Scholar 

  50. Steensberg A. The role of IL-6 in exercise-induced immune changes and metabolism. Exerc Immunol Rev. 2003;9:40–7.

    PubMed  Google Scholar 

  51. Steensberg A, Keller C, Starkie RL, Osada T, Febbraio MA, Pedersen BK. IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283:E1272–8.

    PubMed  CAS  Google Scholar 

  52. Sonnenberg S, Shearman CP, Baxter S, Morris GE, et al. Level of ex vivo interleukin 6 expression in human peripheral fat compared with other tissues. Eur J Vasc Endovasc Surg. 2008;35:314–9.

    PubMed  CAS  Google Scholar 

  53. Yasukawa H, Ohishi M, Mori H, Murakami M, et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol. 2003;4:551–6.

    PubMed  CAS  Google Scholar 

  54. Steppan CM, Bailey ST, Bhat S, Brown EJ, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.

    PubMed  CAS  Google Scholar 

  55. Fain JN, Cheema PS, Bahouth SW, Lloyd HM. Resistin release by human adipose tissue explants in primary culture. Biochem Biophys Res Commun. 2003;300:674–8.

    PubMed  CAS  Google Scholar 

  56. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 2003;300:472–6.

    PubMed  CAS  Google Scholar 

  57. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    PubMed  CAS  Google Scholar 

  58. Gerber M, Boettner A, Seidel B, Lammert A, et al. Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J Clin Endocrinol Metab. 2005;90:4503–9.

    PubMed  CAS  Google Scholar 

  59. Savage DB, Sewter CP, Klenk ES, Segal DG, et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes. 2001;50:2199–202.

    PubMed  CAS  Google Scholar 

  60. McTernan PG, Fisher FM, Valsamakis G, Chetty R, et al. Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab. 2003;88:6098–106.

    PubMed  CAS  Google Scholar 

  61. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111:932–9.

    PubMed  CAS  Google Scholar 

  62. Mojiminiyi OA, Abdella NA. Associations of resistin with inflammation and insulin resistance in patients with type 2 diabetes mellitus. Scand J Clin Lab Invest. 2007;67:215–25.

    PubMed  CAS  Google Scholar 

  63. Norata GD, Ongari M, Garlaschelli K, Raselli S, Grigore L, Catapano AL. Plasma resistin levels correlate with determinants of the metabolic syndrome. Eur J Endocrinol. 2007;156:279–84.

    PubMed  CAS  Google Scholar 

  64. Pischon T, Bamberger CM, Kratzsch J, Zyriax BC, et al. Association of plasma resistin levels with coronary heart disease in women. Obes Res. 2005;13:1764–71.

    PubMed  CAS  Google Scholar 

  65. Yaturu S, Daberry RP, Rains J, Jain S. Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine. 2006;34:219–23.

    PubMed  CAS  Google Scholar 

  66. Frankel DS, Vasan RS, D’Agostino Sr RB, Benjamin EJ, et al. Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol. 2009;53:754–62.

    PubMed  CAS  Google Scholar 

  67. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174:5789–95.

    PubMed  CAS  Google Scholar 

  68. Rae C, Graham A. Human resistin promotes macrophage lipid accumulation. Diabetologia. 2006;49:1112–4.

    PubMed  CAS  Google Scholar 

  69. Calabro P, Samudio I, Willerson JT, Yeh ET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation. 2004;110:3335–40.

    PubMed  CAS  Google Scholar 

  70. Quadro L, Blaner WS, Salchow DJ, Vogel S, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999;18:4633–44.

    PubMed  CAS  Google Scholar 

  71. Yang Q, Graham TE, Mody N, Preitner F, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–62.

    PubMed  CAS  Google Scholar 

  72. Graham TE, Yang Q, Bluher M, Hammarstedt A, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354:2552–63.

    PubMed  CAS  Google Scholar 

  73. Meisinger C, Ruckert IM, Rathmann W, Doring A, et al. Retinol-binding protein 4 is associated with prediabetes in adults from the general population: the Cooperative Health Research in the Region of Augsburg (KORA) F4 Study. Diabetes Care. 2011;34:1648–50.

    PubMed  Google Scholar 

  74. Ingelsson E, Sundstrom J, Melhus H, Michaelsson K, et al. Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly. Atherosclerosis. 2009;206:239–44.

    PubMed  CAS  Google Scholar 

  75. Janke J, Engeli S, Boschmann M, Adams F, et al. Retinol-binding protein 4 in human obesity. Diabetes. 2006;55:2805–10.

    PubMed  CAS  Google Scholar 

  76. Promintzer M, Krebs M, Todoric J, Luger A, et al. Insulin resistance is unrelated to circulating retinol binding protein and protein C inhibitor. J Clin Endocrinol Metab. 2007;92:4306–12.

    PubMed  CAS  Google Scholar 

  77. Haider DG, Schindler K, Prager G, Bohdjalian A, et al. Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2007;92:1168–71.

    PubMed  CAS  Google Scholar 

  78. Bobbert T, Raila J, Schwarz F, Mai K, et al. Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima media thickness. Atherosclerosis. 2010;213:549–51.

    PubMed  CAS  Google Scholar 

  79. Solini A, Santini E, Madec S, Rossi C, Muscelli E. Retinol-binding protein-4 in women with untreated essential hypertension. Am J Hypertens. 2009;22:1001–6.

    PubMed  CAS  Google Scholar 

  80. Moschen AR, Gerner RR, Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Curr Pharm Des. 2010;16:1913–20.

    PubMed  CAS  Google Scholar 

  81. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    PubMed  CAS  Google Scholar 

  82. Skop V, Kontrova K, Zidek V, Pravenec M, et al. Autocrine effects of visfatin on hepatocyte sensitivity to insulin action. Physiol Res. 2010;59:615–8.

    PubMed  CAS  Google Scholar 

  83. Varma V, Yao-Borengasser A, Rasouli N, Bodles AM, et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, and inflammation. J Clin Endocrinol Metab. 2007;92:666–72.

    PubMed  CAS  Google Scholar 

  84. Ozgen M, Koca SS, Aksoy K, Dagli N, Ustundag B, Isik A. Visfatin levels and intima-media thicknesses in rheumatic diseases. Clin Rheumatol. 2011;30:757–63.

    PubMed  Google Scholar 

  85. Filippatos TD, Randeva HS, Derdemezis CS, Elisaf MS, Mikhailidis DP. Visfatin/PBEF and atherosclerosis-related diseases. Curr Vasc Pharmacol. 2010;8:12–28.

    PubMed  CAS  Google Scholar 

  86. Derdemezis C, Filippatos T, Tselepis A, Mikhailidis D, Elisaf M. Effects of ezetimibe, either alone or in combination with atorvastatin, on serum visfatin levels: a pilot study. Expert Opin Pharmacother. 2008;9:1829–37.

    PubMed  CAS  Google Scholar 

  87. Hida K, Wada J, Eguchi J, Zhang H, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005;102:10610–5.

    PubMed  CAS  Google Scholar 

  88. Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs. 2008;17:327–33.

    PubMed  CAS  Google Scholar 

  89. Seeger J, Ziegelmeier M, Bachmann A, Lossner U, et al. Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab. 2008;93:247–51.

    PubMed  CAS  Google Scholar 

  90. Li Q, Chen R, Moriya J, Yamakawa J, et al. A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J Int Med Res. 2008;36:625–9.

    PubMed  CAS  Google Scholar 

  91. Choi SH, Kwak SH, Lee Y, Moon MK, et al. Plasma vaspin concentrations are elevated in metabolic syndrome in men and are correlated with coronary atherosclerosis in women. Clin Endocrinol (Oxf). 2011.

  92. Kadoglou NP, Gkontopoulos A, Kapelouzou A, Fotiadis G, et al. Serum levels of vaspin and visfatin in patients with coronary artery disease-Kozani study. Clin Chim Acta. 2011;412:48–52.

    PubMed  CAS  Google Scholar 

  93. Gulcelik NE, Karakaya J, Gedik A, Usman A, Gurlek A. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol. 2009;160:65–70.

    PubMed  CAS  Google Scholar 

  94. Youn BS, Kloting N, Kratzsch J, Lee N, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes. 2008;57:372–7.

    PubMed  CAS  Google Scholar 

  95. Sonoli SS, Shivprasad S, Prasad CV, Patil AB, Desai PB, Somannavar MS. Visfatin–a review. Eur Rev Med Pharmacol Sci. 2011;15:9–14.

    PubMed  CAS  Google Scholar 

  96. Boucher J, Masri B, Daviaud D, Gesta S, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–71.

    PubMed  CAS  Google Scholar 

  97. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem. 2000;275:21061–7.

    PubMed  CAS  Google Scholar 

  98. Japp AG, Cruden NL, Amer DA, Li VK, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008;52:908–13.

    PubMed  CAS  Google Scholar 

  99. Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 2002;91:434–40.

    PubMed  CAS  Google Scholar 

  100. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, et al. Apelin has in vivo inotropic effects on normal and failing hearts. Circulation. 2004;110:II187–93.

    PubMed  Google Scholar 

  101. Chen MM, Ashley EA, Deng DX, Tsalenko A, et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108:1432–9.

    PubMed  CAS  Google Scholar 

  102. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC. Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol. 2007;102:518–28.

    PubMed  CAS  Google Scholar 

  103. Li L, Yang G, Li Q, Tang Y, et al. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes. 2006;114:544–8.

    PubMed  CAS  Google Scholar 

  104. Erdem G, Dogru T, Tasci I, Sonmez A, Tapan S. Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2008;116:289–92.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Hivert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Hivert, MF. Update on the Role of Adipokines in Atherosclerosis and Cardiovascular Diseases. Curr Cardiovasc Risk Rep 6, 53–61 (2012). https://doi.org/10.1007/s12170-011-0210-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-011-0210-4

Keywords

Navigation