Skip to main content
Log in

Rapid Analysis of Multiple Sudan Dyes in Chili Flakes Using Surface-Enhanced Raman Spectroscopy Coupled with Au–Ag Core-Shell Nanospheres

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Sudan dyes are often illegally added as colorants into a variety of foodstuffs and have been tied to many food safety issues. In this study, surface-enhanced Raman spectroscopy (SERS) coupled with Au–Ag core-shell nanospheres (Au@Ag) was applied to analyze standard solutions of Sudan I–IV and Sudan dyes in chili flakes. With the use of 90 ± 5 nm Au@Ag (Au seed 20 ± 2 nm) as SERS substrate, the lowest detectible concentrations for Sudan I and II were 0.10 mg/L, for Sudan III was 0.08 mg/L, and for Sudan IV was 0.2 mg/L. The use of principal component analysis (PCA) could successfully classify different Sudan dyes based upon the SERS spectra of their standard solutions. For chili flakes, the use of acetonitrile as extraction solvent led to an overall higher sensitivity for analysis of Sudan dyes with SERS method compared to that of methanol, ethanol, and n-hexane. The lowest detectible concentrations for Sudan I–III in chili flakes were 1 mg/kg and for Sudan IV was 2 mg/kg, which were about ten times as much as that for their standard solutions due to the interference of non-target compounds from sample matrices. Partial least squares (PLS) models developed for quantitative analyses showed relatively high linear correlation between the actual and predicted amounts of Sudan dyes in chili flakes (R 2 cv = 0.869–0.959). The results showed great potential of applying Au@Ag as SERS substrate for qualitative and quantitative analysis of Sudan I–IV with simplified sample preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Awadelkarim KD, Mariani-Costantini R, Elwali NE (2012) Cancer in the Sudan: an overview of the current status of knowledge on tumor patterns and risk factors. Sci Total Environ 423:214–228. doi:10.1016/j.scitotenv.2010.09.010

    Article  CAS  Google Scholar 

  • Chen K, Shen Z, Luo J, Wang X, Sun R (2015) Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I. Appl Surf Sci 351:466–473. doi:10.1016/j.apsusc.2015.05.149

    Article  CAS  Google Scholar 

  • Chen M, Ma X, Li X (2013) Electrochemical determination of Sudan IV in food samples by using graphene-modified glassy carbon electrodes. Turkish J Chem 37:959–965. doi:10.3906/kim-1207-6

    Article  CAS  Google Scholar 

  • Chen NY, Li HF, Gao ZF, Qu F, Li NB, Luo HQ (2014) Utilizing polyethyleneimine-capped silver nanoclusters as a new fluorescence probe for Sudan I–IV sensing in ethanol based on fluorescence resonance energy transfer. Sensor Actuat B-Chem 193:730–736. doi:10.1016/j.snb.2013.12.020

    Article  CAS  Google Scholar 

  • Cheung W, Shadi IT, Xu Y, Goodacre R (2010) Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. J Phys Chem C 114:7285–7290. doi:10.1021/jp908892n

    Article  CAS  Google Scholar 

  • Combes R, Haveland-Smith R (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutat Res 98:101–243. doi:10.1016/0165-1110(82)90015-X

    Article  CAS  Google Scholar 

  • Di Anibal CV, Marsal LF, Callao MP, Ruisánchez I (2012) Surface enhanced Raman spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochim Acta A 87:135–141. doi:10.1016/j.saa.2011.11.027

    Article  CAS  Google Scholar 

  • Dou W, He Q, Zhou G, Kang Q, Yang Y, Chen J (2012) IR, Raman and DFT studies of Sudan red III and IV. Spectrosc Spect Anal 32:3247–3252. doi:10.3964/j.issn.1000-0593(2012)12-3247-06

    CAS  Google Scholar 

  • Downham A, Collins P (2000) Colouring our foods in the last and next millennium. Int J Food Sci Tech 35:5–22. doi:10.1046/j.1365-2621.2000.00373.x

    Article  CAS  Google Scholar 

  • Ertas E, Ozer H, Alasalvar C (2007) A rapid HPLC method for determination of Sudan dyes and Para red in red chilli pepper. Food Chem 105:756–760. doi:10.1016/j.foodchem.2007.01.010

    Article  CAS  Google Scholar 

  • Esme A, Sagdinc SG (2013) The vibrational studies and theoretical investigation of structure, electronic and non-linear optical properties of Sudan III [1-{[4-(phenylazo) phenyl]azo}-2-naphthalenol]. J Mol Struct 1048:185–195. doi:10.1016/j.molstruc.2013.05.022

    Article  CAS  Google Scholar 

  • Fan Y, Lai K, Rasco BA, Huang Y (2014) Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control 37:153–157. doi:10.1016/j.foodcont.2013.09.014

    Article  CAS  Google Scholar 

  • Fan Y, Lai K, Rasco BA, Huang Y (2015) Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis. LWT - Food Sci Tech 60:352–357. doi:10.1016/j.lwt.2014.08.011

    Article  CAS  Google Scholar 

  • Ferreira GR, Garcia HC, Couri MR, Dos Santos HF, de Oliveira LF (2013) On the azo/hydrazo equilibrium in Sudan I azo dye derivatives. J Phys Chem A 117:642–649. doi:10.1021/jp310229h

    Article  CAS  Google Scholar 

  • Fonovich TM (2013) Sudan dyes: are they dangerous for human health? Drug Chem Toxicol 36:343–352. doi:10.3109/01480545.2012.710626

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22. doi:10.1038/physci241020a0

    CAS  Google Scholar 

  • GB19681-2005 The method for the determination of Sudan dyes in foods—high performance liquid chromatography (China)

  • Graham D, Faulds K, Smith WE (2006) Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chem Commun:4363–4371. doi:10.1039/B607904K

  • Haughey SA, Galvin-King P, Ho Y-C, Bell SEJ, Elliott CT (2015) The feasibility of using near infrared and Raman spectroscopic techniques to detect fraudulent adulteration of chili powders with Sudan dye. Food Control 48:75–83. doi:10.1016/j.foodcont.2014.03.047

    Article  CAS  Google Scholar 

  • Hou X, Li Y, Cao S, Zhang Z, Wu Y (2010) Analysis of Para red and Sudan dyes in egg yolk by UPLC-MS-MS. Chromatographia 71:135–138. doi:10.1365/s10337-009-1357-8

    Article  CAS  Google Scholar 

  • Huang Y, Rogers TM, Wenz MA, Cavinato AG, Mayes DM, Bledsoe GE, Rasco BA (2001) Detection of sodium chloride in cured salmon roe by SW-NIR spectroscopy. J Agri Food Chem 49:4161–4167. doi:10.1021/jf001177f

    Article  CAS  Google Scholar 

  • Jahn M, Patze S, Bocklitz T, Weber K, Cialla-May D, Popp J (2015) Towards SERS based applications in food analytics: lipophilic sensor layers for the detection of Sudan III in food matrices. Anal Chim Acta 860:43–50. doi:10.1016/j.aca.2015.01.005

    Article  CAS  Google Scholar 

  • Lai K, Zhang Y, Du R, Zhai F, Rasco BA, Huang Y (2011) Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sens & Instrumen Food Qual 5:19–24. doi:10.1007/s11694-011-9106-8

    Article  Google Scholar 

  • Li C, Huang Y, Lai K, Rasco BA, Fan Y (2016) Analysis of trace methylene blue in fish muscle using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 65:95–105. doi:10.1016/j.foodcont.2016.01.017

    Article  Google Scholar 

  • Li C, Huang Y, Pei L, Wu W, Yu W, Rasco BA, Lai K (2014) Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy. Food Anal Method 7:2107–2112. doi:10.1007/s12161-014-9857-z

    Article  Google Scholar 

  • Liu C, Wang S, Xu S, Xu W (2013) SERS and EEM fluorescence spectral distinction of Sudan I and parrika red in food. Chem J Chinese Universities 11:2505–2510. doi:10.7503/cjcu20130379

    Google Scholar 

  • Liu Z et al. (2014) Development of an ELISA for detection of Sudan I in food samples using monoclonal antibody. Food Agr Immunol 25:556–568. doi:10.1080/09540105.2013.858309

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Accounts Chem Res 42:734–742. doi:10.1021/ar800249y

    Article  CAS  Google Scholar 

  • Lopez MI, Ruisanchez I, Callao MP (2013) Figures of merit of a SERS method for Sudan I determination at traces levels. Spectrochim Acta A 111:237–241. doi:10.1016/j.saa.2013.04.031

    Article  CAS  Google Scholar 

  • Pan Y, Lai K, Fan Y, Li C, Pei L, Rasco BA, Huang Y (2014) Determination of tert-butylhydroquinone in vegetable oils using surface-enhanced Raman spectroscopy. J Food Sci 79:T1225–T1230. doi:10.1111/1750-3841.12482

    Article  CAS  Google Scholar 

  • Pei L, Huang Y, Li C, Zhang Y, Rasco BA, Lai K (2014) Detection of triphenylmethane drugs in fish muscle by surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanoparticles. J Nanomater 2014:1–8. doi:10.1155/2014/730915

    Article  Google Scholar 

  • Pei L, Ou Y, Yu W, Fan Y, Huang Y, Lai K (2015) Au-Ag core-shell nanospheres for surface-enhanced Raman scattering detection of Sudan I and Sudan II in chili powder. J Nanomater 2015:1–8. doi:10.1155/2015/430925

    Google Scholar 

  • Rebane R, Leito I, Yurchenko S, Herodes K (2010) A review of analytical techniques for determination of Sudan I-IV dyes in food matrixes. J Chromatogr A 1217:2747–2757. doi:10.1016/j.chroma.2010.02.038

    Article  CAS  Google Scholar 

  • Sackmann M, Materny A (2006) Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? J Raman Spectros 37:305–310. doi:10.1002/jrs.1443

    Article  CAS  Google Scholar 

  • Zhang Y, Huang Y, Zhai F, Du R, Liu Y, Lai K (2012) Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem 135:845–850. doi:10.1016/j.foodchem.2012.04.082

    Article  CAS  Google Scholar 

  • Zhang Y, Yu W, Pei L, Lai K, Rasco BA, Huang Y (2015) Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem 169:80–84. doi:10.1016/j.foodchem.2014.07.129

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Sun Y (2006) Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO—luminol chemiluminescence detection. J Chromatogr A 1129:34–40. doi:10.1016/j.chroma.2006.06.028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31501558), Shanghai Ocean University (A2-0302-14-300072), and the Agricultural Research Center, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Fan.

Ethics declarations

Conflict of Interest

Yiming Ou has no conflict of interest. Lu Pei has no conflict of interest. Keqiang Lai has no conflict of interest. Yiqun Huang has no conflict of interest. Barbara A. Rasco has no conflict of interest. Xiaohui Wang has no conflict of interest. Yuxia Fan has no conflict of interest. This article does not contain any studies with human or animal subjects.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Pei, L., Lai, K. et al. Rapid Analysis of Multiple Sudan Dyes in Chili Flakes Using Surface-Enhanced Raman Spectroscopy Coupled with Au–Ag Core-Shell Nanospheres. Food Anal. Methods 10, 565–574 (2017). https://doi.org/10.1007/s12161-016-0618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0618-z

Keywords

Navigation