Skip to main content
Log in

An LC-MS/MS-SRM Method for Simultaneous Quantification of Four Representative Organosulfur Compounds in Garlic Products

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The quantitative analysis of organosulfur compounds is important for the quality control of various garlic products along with studying their molecular functionality and nutraceutical properties. In this study, a liquid chromatography-tandem mass spectrometry-selected reaction monitoring (LC-MS/MS-SRM) method with electrospray ionization detection was developed and validated for the rapid, simultaneous quantification of four representative organosulfur compounds in garlic: alliin, S-allyl-L-cysteine, γ-glutamyl-S-allyl-L-cysteine, and allicin. Stable SRM transitions were achieved for these compounds under optimized conditions, and the linear range extended from 1 to 2000 ng/mL. The limits of detection and quantification ranged from 0.003 to 0.058 ng/mL and from 0.01 to 0.19 ng/mL, respectively. Excellent recovery and reproducibility at different spiking levels were achieved. The method was successfully applied to the simultaneous quantification of organosulfur compounds in fresh garlic samples. This highly selective and sensitive LC-MS/MS-SRM method is expected to be a useful tool for studying molecular functionality and the quality control of garlic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y (2001) Intake of garlic and its bioactive components. J Nutr 131:955s–962s

    CAS  Google Scholar 

  • Arnault I, Christides JP, Mandon N, Haffner T, Kahane R, Auger J (2003) High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J Chromatogr A 991:69–75

    Article  CAS  Google Scholar 

  • Bae SE, Cho SY, Won YD, Lee SH, Park HJ (2012) A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT-Food Science and Technology 46:532–535

    Article  CAS  Google Scholar 

  • Beato VM, Sanchez AH, de Castro A, Montano A (2012) Effect of processing and storage time on the contents of organosulfur compounds in pickled blanched garlic. J Agric Food Chem 60:3485–3491. doi:10.1021/jf3002075

    Article  CAS  Google Scholar 

  • Block E (1985) The chemistry of garlic and onions. SciAm 252:114

    CAS  Google Scholar 

  • Butt MS, Sultan MT, Butt MS, Iqbal J (2009) Garlic: nature’s protection against physiological threats. Crit Rev Food Sci Nutr 49:538–551. doi:10.1080/10408390802145344

    Article  CAS  Google Scholar 

  • Capasso A (2013) Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules 18:690–700. doi:10.3390/molecules18010690

    Article  CAS  Google Scholar 

  • Castro C, Lorenzo AG, Gonzalez A, Cruzado M (2010) Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: Involvement of cell-cycle inhibitor p27(Kip1) and mitogen-activated protein kinase. Mol Nutr Food Res 54:781–787. doi:10.1002/mnfr.200900108

    Article  CAS  Google Scholar 

  • Diana Di Mavungu J et al (2009) LC-MS/MS multi-analyte method for mycotoxin determination in food supplements food additives and contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 26:885–895. doi:10.1080/02652030902774649

    Article  Google Scholar 

  • Fujisawa H, Suma K, Origuchi K, Kumagai H, Seki T, Ariga T (2008) Biological and chemical stability of garlic-derived allicin. J Agric Food Chem 56:4229–4235

    Article  CAS  Google Scholar 

  • Gianazza E, Tremoli E, Banfi C (2014) The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases. Expert Rev Proteomics 11:771–788. doi:10.1586/14789450.2014.947966

    Article  CAS  Google Scholar 

  • Gorinstein S et al (2009) Comparative control of the bioactivity of some frequently consumed vegetables subjected to different processing conditions. Food Control 20:407–413

    Article  CAS  Google Scholar 

  • Guo B, Chen B, Liu AM, Zhu WT, Yao SZ (2012) Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr Drug Metab 13:1226–1243

    Article  CAS  Google Scholar 

  • Hughes J, Tregova A, Tomsett AB, Jones MG, Cosstick R, Collin HA (2005) Synthesis of the flavour precursor, alliin, in garlic tissue cultures. Phytochemistry 66:187–194. doi:10.1016/j.phytochem.2004.11.009

    Article  CAS  Google Scholar 

  • Iberl B, Winkler G, Müller B, Knobloch K (1990) Quantitative determination of allicin and alliin from garlic by HPLC. Planta Med 56:320–326

    Article  CAS  Google Scholar 

  • Ichikawa M, Ide N, Ono K (2006a) Changes in organosulfur compounds in garlic cloves during storage. J Agric Food Chem 54:4849–4854. doi:10.1021/jf060083o

    Article  CAS  Google Scholar 

  • Ichikawa M, Ide N, Yoshida J, Yamaguchi H, Ono K (2006b) Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J Agric Food Chem 54:1535–1540. doi:10.1021/jf051742k

    Article  CAS  Google Scholar 

  • Jones M et al (2007) The biochemical and physiological genesis of alliin in garlic. Medicinal and Aromatic Plant Science and Biotechnology 1:21–24

    Google Scholar 

  • Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B 877:1229–1239. doi:10.1016/j.jchromb.2008.11.013

    Article  CAS  Google Scholar 

  • Kodera Y et al (2002) Physical, chemical, and biological properties of S-allylcysteine, an amino acid derived from garlic. J Agric Food Chem 50:622–632. doi:10.1021/jf0106648

    Article  CAS  Google Scholar 

  • Kubec R, Svobodova M, Velisek J (1999) Gas chromatographic determination of S-alk(en)ylcysteine sulfoxides. J Chromatogr A 862:85–94

    Article  CAS  Google Scholar 

  • Lanzotti V, Scala F, Bonanomi G (2014) Compounds from allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13:769–791. doi:10.1007/s11101-014-9366-0

    Article  CAS  Google Scholar 

  • Lawson LD, Hughes BG (1992) Characterization of the formation of allicin and other thiosulfinates from garlic. Planta Med 58:345–350

    Article  CAS  Google Scholar 

  • Lee S, Yoo M, Kim S, Shin D (2014) Identification and quantification of S-allyl-l-cysteine in heated garlic juice by HPLC with ultraviolet and mass spectrometry detection. LWT Food Sci Technol 57:516–521. doi:10.1016/j.lwt.2014.02.002

    Article  CAS  Google Scholar 

  • Lee S, Chang NI, Yoo M, Choi JH, Shin D (2015) Development and validation of S-allyl-L-cysteine in rat plasma using a mixed-mode reversed-phase and cation-exchange LC-ESI-MS/MS method: application to pharmacokinetic studies. J Chromatogr Sci 53:54–59. doi:10.1093/chromsci/bmu013

    Article  CAS  Google Scholar 

  • Liang T, Wei F, Lu Y, Kodani Y, Nakada M, Miyakawa T, Tanokura M (2015) Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J Agric Food Chem 63:683–691. doi:10.1021/jf504836d

    Article  CAS  Google Scholar 

  • Marin A, Barbas C (2006) Systematic comparison of different functionality columns for a classical pharmaceutical problem. J Pharm Biomed Anal 40:262–270

    Article  CAS  Google Scholar 

  • Mondy N, Naudin A, Christides J, Mandon N, Auger J (2001) Comparison of GC-MS and HPLC for the analysis of allium volatiles. Chromatographia 53:S356–S360

    Article  CAS  Google Scholar 

  • Monosulphide D, Monosulphide DT (2001) Stability of allicin in garlic—a kinetic study. Indian journal of chemical technology 8:195–199

    Google Scholar 

  • Montano A, Beato VM, Mansilla F, Orgaz F (2011) Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum L.) grown in Andalusia, Spain. J Agric Food Chem 59(4):1301–1307

    Article  CAS  Google Scholar 

  • Mordehai A, Fjeldsted J (2009) Agilent jet stream thermal gradient focusing technology agilent technologies technical note., publication number 5990 3494

    Google Scholar 

  • Morihara N, Nishihama T, Ushijima M, Ide N, Takeda H, Hayama M (2007) Garlic as an anti-fatigue agent. Mol Nutr Food Res 51:1329–1334. doi:10.1002/mnfr.200700062

    Article  CAS  Google Scholar 

  • Nantz MIP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS (2012) Supplementation with aged garlic extract improves both NK and gamma delta-T cell function and reduces the severity of cold and flu symptoms: a randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 31:337–344. doi:10.1016/j.clnu.2011.11.019

    Article  CAS  Google Scholar 

  • Nicastro HL, Ross SA, Milner JA (2015) Garlic and onions: their cancer prevention properties. Cancer Prev Res 8:181–189. doi:10.1158/1940-6207.capr-14-0172

    Article  CAS  Google Scholar 

  • Prati P, Henrique CM, Souza AS, Silva VSN, Pacheco MTB (2014) Evaluation of allicin stability in processed garlic of different cultivars. Food Science and Technology (Campinas) 34:623–628

    Article  Google Scholar 

  • Rahman K (2007a) Effects of garlic on platelet biochemistry and physiology. Mol Nutr Food Res 51:1335–1344. doi:10.1002/mnfr.200700058

    Article  CAS  Google Scholar 

  • Rahman MS (2007b) Allicin and other functional active components in garlic: health benefits and bioavailability international. Journal of Food Properties 10:245–268

    Article  CAS  Google Scholar 

  • Saito Y (2008) Garlic science: chemistry of garlic. Asakura Publishing Co, Ltd., p 96

    Google Scholar 

  • Santhosha SG, Jamuna P, Prabhavathi SN (2013) Bioactive components of garlic and their physiological role in health maintenance: a review. Food Bioscience 3:59–74. doi:10.1016/j.fbio.2013.07.001

    Article  CAS  Google Scholar 

  • Suleria HAR, Butt MS, Khalid N, Sultan S, Raza A, Aleem M, Abbas M (2015) Garlic (Allium sativum): diet based therapy of 21st century—a review. Asian Pacific Journal of Tropical Disease 5:271–278. doi:10.1016/S2222-1808(14)60782-9

    Article  CAS  Google Scholar 

  • Yoo M, Lee S, Kim S, Hwang JB, Choe J, Shin D (2014) Composition of organosulfur compounds from cool-and warm-type garlic (Allium sativum L.) in Korea. Food Sci Biotechnol 23(2):337–344

    Article  CAS  Google Scholar 

  • Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, Han SB, Hong JT (2014) Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 142:183–195. doi:10.1016/j.pharmthera.2013.12.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Temahimado Co., Ltd. (Kagoshima, Japan) for providing the standard compounds. We thank the Center for Advanced Instrumental and Educational Supports (Faculty of Agriculture, Kyushu University) for providing the LCMS-IT-TOF instrument for exploring the ionization conditions in the initial stage of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyoshi Shimizu.

Ethics declarations

Conflict of Interest

Qinchang Zhu declares that he has no conflict of interest. Kenichi Kakino declares that he has no conflict of interest. Chika Nogami declares that he has no conflict of interest. Koichiro Ohnuki declares that he has no conflict of interest. Kuniyoshi Shimizu declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Kakino, K., Nogami, C. et al. An LC-MS/MS-SRM Method for Simultaneous Quantification of Four Representative Organosulfur Compounds in Garlic Products. Food Anal. Methods 9, 3378–3384 (2016). https://doi.org/10.1007/s12161-016-0535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0535-1

Keywords

Navigation