Skip to main content
Log in

Direct Determination of Dichlorprop in Commercial Formulations, Tomato and Fruit Samples Using Photochemically Induced Fluorescence

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A sensitive and simple method for dichlorprop, based on photochemically induced fluorescence detection, is proposed and applied to the determination of this herbicide in a technical formulation and in vegetable samples. The principle for the determination of dichlorprop is based on the enhancive effect of UV irradiation on the fluorescence signal of the analyte. The emission process correlated well with the mechanism of photoxidation in which the chlorine substituents of the aromatic ring are exchanged by a hydroxyl function. This technique is useful for the determination of compounds in samples with background fluorescence, such as dichlorprop in plum and tomato, without the need for tedious preparation. The dichlorprop irradiation process and chemical conditions for the fluorescence determination were optimised. According to the photochemical behaviour of the analyte, 6 min was selected as UV irradiation time in 50 % (v/v) methanol and pH 5 buffer solutions. The increment of the fluorescence intensity was proportional to the concentration of dichlorprop, giving a linear calibration graph over the concentration range from 40 to 200 ng mL−1 with a detection limit of 0.8 ng mL−1. Background fluorescence from plum and tomato matrices disappeared by subjecting each sample to selected irradiation treatment. Recoveries from all these vegetable samples of added dichlorprop were near 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aaron JJ (1993) Photochemical fluorometry. In: Schulman SG (ed) Molecular luminescence spectroscopy. Methods and applications. Wiley, New York, pp 85–131

    Google Scholar 

  • Bettaieb L, Aaron JJ (2001) Photochemically-induced fluorescence properties and determination of flufenamic acid, a non-steroidal anti-inflammatory drug, in urine and pharmaceutical preparation. Turk J Chem 25:165–171

    CAS  Google Scholar 

  • Bogus ER, Watschke TL, Mumma RO (1990) Utilization of solid-phase extraction and reversed-phase and ion-pair chromatography in the analysis of seven agrochemicals in water. J Agric Food Chem 38:142–144

    Article  CAS  Google Scholar 

  • Brillas E, Baños MA, Skoumal CPL, Garrido JA, Rodríguez RM (2007) Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectron-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68:199–209

    Article  CAS  Google Scholar 

  • Caballo C, Sicilia MD, Rubio S (2013) Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry. Anal Chim Acta 761:102–108

    Article  CAS  Google Scholar 

  • Catalina MI, Dallüge J, Vreuls RJ, Brinkman UA (2000) Determination of chlorophenoxy acid herbicides in water by in situ esterification followed by in-vial liquid-liquid extraction combined with large-volume on-column injection and gas chromatography–mass spectrometry. J Chromatogr A 877:153–166

    Article  CAS  Google Scholar 

  • Clayton CA, Hines JW, Elkins PD (1987) Detection limits with specified assurance probabilities. Anal Chem 59:2506–2514

    Article  CAS  Google Scholar 

  • Coelho AL, Aucélio RQ (2006) Photochemical induced fluorescence for the determination of prednisolone and triamcinolone. Anal Lett 39:619–630

    Article  CAS  Google Scholar 

  • Coly A, Aaron JJ (1998) Fluorimetric analysis of pesticides: methods, recent developments and applications. Talanta 46:815–843

    Article  CAS  Google Scholar 

  • Coquart V, Hennion MC (1993) Determination of phenoxyacid herbicides in drinking water at the ppt-level by liquid chromatography and on-line selective preconcentration. Sci Total Environ 132:349–360

    Article  CAS  Google Scholar 

  • Flores L, Fernández de Córdova ML, Molina DA (2009) Flow-through optosensing device implemented with photochemically-induced fluorescence for the rapid and simple screening of metsulfuron methyl in environmental waters. J Environ Monit 11:1080–1085

    Article  Google Scholar 

  • Gambino GL, Pagano P, Scordino M, Sabatino L, Scollo E, Traulo P, Gagliano G (2008) Determination of plant hormones in fertilizers by high-performance liquid chromatography with photodiode array detection: method development and single-laboratory validation. J AOAC Int 91:1245–1256

    CAS  Google Scholar 

  • Garcia Sánchez F, Navas Díaz A, Alonso F, Lovillo J (1993) Polarization fluoroimmunoassay of the herbicide dichlorprop. J Agric Food Chem 41:2215–2219

    Article  Google Scholar 

  • García Sánchez F, Navas Díaz A, Lovillo J (1993) Phase-modulation fluorescence lifetime immunoassay of dichlorprop. Anal Biochem 214:359–365

    Article  Google Scholar 

  • García Sánchez F, Navas Díaz A, Lovillo J (1996) Enzyme-linked immunosorbent assay by image analysis using a charge-coupled device array detector. Anal Biochem 239:2–7

    Article  Google Scholar 

  • García Sánchez F, Navas Díaz A, Pablo BL, Algarra M, Aguilar A, Baro EN (2011) Elisa of dichlorprop by digital image analysis. Global J Anal Chem 2:285–291

    Google Scholar 

  • Garcia LF, Eremin S, Aaron JJ (1996) Flow-injection analysis of chlorophenoxyacid herbicides using photochemically induced fluorescence detection. Anal Lett 29:1447–1461

    Article  CAS  Google Scholar 

  • Garrison AW, Schmitt P, Martens D, Kettrup A (1996) Enantiomeric selectivity in the environmental degradation of dichlorprop as determined by high-performance capillary electrophoresis

  • Gavioli E, Maier NM, Minguillón C, Lindner W (2004) Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Anal Chem 76:5837–5848

    Article  CAS  Google Scholar 

  • Gil-Garcia MD, Martínez-Galera M, López-López T, Martínez-Vidal JL, Mahedero MC, Salinas F (2001) Photochemical-spectrofluorimetric method for the determination of benzoylurea insecticides: applications in river water samples and in technical formulations. Talanta 53:915–925

    Article  CAS  Google Scholar 

  • Hamann R, Kettrup A (1987) Determination of phenoxy acid herbicides in water samples. Chemosphere 16:527–536

    Article  CAS  Google Scholar 

  • Hodgeson J, Collins J, Bashe W (1994) Determination of acid herbicides in aqueous samples by liquid–solid disk extraction and capillary gas chromatography. J Chromatogr A 659:395–401

    Article  CAS  Google Scholar 

  • Inoue K, Prayoonhan N, Tsutsui H, Sakamoto T, Nishimura M, Toyo’oka T (2013) Use of chiral derivatization for the determination of dichlorprop in tea samples by ultra performance LC with fluorescence detection. J Sep Sci 36:1356–1361

    Article  CAS  Google Scholar 

  • Irace-Guigand S, Leverend E, Seye MD, Aaron JJ (2005) A new on-line micellar-enhanced photochemically-induced fluorescence method for determination of phenylurea herbicide residues in water. Luminescence 20:138–142

    Article  CAS  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology. 2nd edn

  • Janata E (2002) Direct optical observation of the formation of some aliphatic alcohol radicals. A pulse radiolysis study. Proc Indian Acad Sci 114:731–737

    Article  CAS  Google Scholar 

  • Johnen BG (1999) Herbicides and food quality a misfit? In Proceedings of Brighton Conference, Weeds, Vol. 3. British Crop Protection Council UK, pp 875–882

  • Long Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Google Scholar 

  • López Flores J, Fernández de Córdova ML, Molina DA (2007) Multicommutated flow-through optosensors implemented with photochemically induced fluorescence: determination of flufenamic acid. Anal Biochem 361:280–286

    Article  Google Scholar 

  • Mahedero MC, Galeano Díaz T, Galán PS (2002a) Resolution of ternary mixtures of nitrofurantoin, furaltadone and furazolidone by partial least-square analysis to the spectrophotometric signals after photo-decomposition. J Pharm Biomed Anal 29:477–485

    Article  CAS  Google Scholar 

  • Mahedero MC, Galeano Díaz T, Galán PS (2002b) Determination of sulphamethoxazole by photochemically induced fluorescence in drugs and milk. Talanta 57:1–6

    Article  CAS  Google Scholar 

  • Manahan SE (2000) Environmental chemistry, 7th edn. CRC Press, Boca Raton

    Google Scholar 

  • Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier Science Ltd, Oxford, p 75

    Google Scholar 

  • Mechref Y, ElRassi Z (1996) Capillary electrophoresis of herbicides. 1. Precolumn derivatization of chiral and achiral phenoxy acid herbicides with a fluorescent tag for electrophoretic separation in the presence of cyclodextrins and micellar phases. Anal Chem 68:1771–1777

    Article  CAS  Google Scholar 

  • Mechref Y, ElRassi Z (1997) Capillary electrophoresis of herbicides. IV. Evaluation of octylmaltopyranoside chiral surfactant in the enantiomeric separation of fluorescently labelled phenoxy acid herbicides and their laser-induced fluorescence detection. Electrophoresis 18:220–226

    Article  CAS  Google Scholar 

  • Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 116:3–14

    Article  CAS  Google Scholar 

  • Murillo Pulgarín JA, García Bermejo LF, Sánchez García MN (2011) Flow injection chemiluminescence determination of vitamin B12 using on-line UV-persulfate photooxidation and charge coupled device detection. Luminescence 26:536–542

    Article  Google Scholar 

  • Sandhya G, Kushwaha SSS (2008) Photo-oxidative degradation and quantification of herbicide residues for pesticidal pollution. Res J Chem Environ 12:89–95

    Google Scholar 

  • Smith AE, Aubin AJ (1991) Metabolites of C-2,4-dichlorophenoxyacetic acid in Saskatchewan soils. J Agric Food Chem 39:2019–2021

    Article  CAS  Google Scholar 

  • Tamarit-López J, Morais S, Puchades R, Maquieira A (2011) Direct hapten-linked multiplexed immunoassays on polycarbonate surfasse. Biosens Bioelectron 26:2694–2698

    Article  Google Scholar 

  • Thompson DG, Stephenson GR, Solomon KR, Skepasts AV (1984) Persistence of (2,4-dichlorophenoxy)acetic acid and 2-(2,4-dichlorophenoxy)propionic acid in agricultural and forest soils of Northem and Southem Ontario. J Agric Food Chem 32:578–581

    Article  CAS  Google Scholar 

  • Vassilakis I, Tsipi D, Scoullos M (1998) Determination of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction, gas chromatography with electron-capture and nitrogen-phosphorus detection and high-performance liquid chromatography with post-column derivatization and fluorescence detection. J Chromatogr A 823:49–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the “Consejería de Educación, Cultura y Deportes” and “Fondo Europeo de Desarrollo Regional (FEDER)” Project no. PEII11-0351-7802

Compliance with Ethics Requirements

Conflict of Interest

José A. Murillo Pulgarín declares that he has no conflict of interest. Luisa F. García Bermejo declares that she has no conflict of interest. Sonia Becedas Rodríguez declares that she has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Murillo Pulgarín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulgarín, J.A.M., Bermejo, L.F.G. & Rodríguez, S.B. Direct Determination of Dichlorprop in Commercial Formulations, Tomato and Fruit Samples Using Photochemically Induced Fluorescence. Food Anal. Methods 8, 1718–1726 (2015). https://doi.org/10.1007/s12161-014-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-0036-z

Keywords

Navigation