Skip to main content
Log in

The Effect of Homogenisation and Storage on the Near-Infrared Spectra of Half Shell Pacific Oysters (Crassostrea gigas)

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The effect of sample homogenisation and storage on the near-infrared spectra of Pacific Oysters (Crassostrea gigas) has been assessed. On each day of storage (Days 0, 3 and 5), spectra were collected using a Fourier transform near-infrared reflectance spectrometer in reflectance mode between 833 and 2,630 nm from whole (n = 20) and homogenised oysters (n = 20). The raw spectra were dominated by water- and fatty-acid-associated bands. Linear regression analysis of the water-associated absorbance bands occurring at 1,942 nm indicated that a physical or chemical interaction may be taking place within the oysters at or near Day 3, likely associated with transfer of liquids to and from oyster tissues. One-way analysis of variance of principal component scores and extended multiplicative scatter correction highlighted the water regions (O–H bonds) in whole oysters and the importance of N–H-related compounds in homogenised oysters throughout storage. These findings indicate the potential usefulness of near-infrared reflectance spectroscopy to monitor and evaluate degradation of oysters over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaraas R, Hernar IJ, Vorre A et al (2004) J Food Sci 69:S205–S210

    Article  CAS  Google Scholar 

  • Ashie INA, Smith JP, Simpson BK, Haard NF (1996) Crit Rev Food Sci Nutr 36:87–121

    Article  CAS  Google Scholar 

  • Benito MTJ, Ojeda CB, Rojas FS (2008) Appl Spectrosc Rev 43:452–484

    Article  Google Scholar 

  • Brown MR (2011) Aquaculture 317:233–239

    Article  Google Scholar 

  • Buzin F, Baudon V, Cardinal M, Barilla L, Haure J (2011) Int J Food Sci Technol 46:1775–1782

    Article  CAS  Google Scholar 

  • Caglak E, Cakli S, Kilinc B (2008) Eur Food Res Technol 226:1293–1299

    Article  CAS  Google Scholar 

  • Cao R, Xue CH, Liu Q, Xue Y (2009) Czech J Food Sci 27:102–108

    CAS  Google Scholar 

  • Carmona P, Sánchez-Alonso I, Careche M (2010) In: Pivonka DE, Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, Chichester, pp 229–239

    Google Scholar 

  • Cozzolino D, De Mattos D, Vaz Martins D (2002) Anim Sci 74:477–484

    Google Scholar 

  • Cozzolino D, Fassio A, Fernandez E, Restaino E, La Manna A (2006) Anim Feed Sci Technol 129:329–336

    Article  CAS  Google Scholar 

  • Cruz-Romero M, Smiddy M, Hill C, Kerry JP, Kelly AL (2004) Innov Food Sci Emerg Technol 5:161–169

    Article  CAS  Google Scholar 

  • Cruz-Romero M, Kelly AL, Kerry JP (2007) Innov Food Sci Emerg Technol 8:30–38

    Article  CAS  Google Scholar 

  • Deaville ER, Flinn PC (2000) In: Givens DI, Owen E, Axford RFE, Omed HM (eds) Forage evaluation in ruminant nutrition. CABI, London, pp 301–320

    Chapter  Google Scholar 

  • Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Blackwell, London, pp 1–6

    Google Scholar 

  • Goulas AE (2008) Packag Technol Sci 21:247–255

    Article  CAS  Google Scholar 

  • Goulas AE, Chouliara I, Nessi E, Kontominas MG, Savvaidis IN (2005) J Appl Microbiol 98:752–760

    Article  CAS  Google Scholar 

  • Gram L, Dalgaard P (2002) Curr Opin Biotechnol 13:262–266

    Article  CAS  Google Scholar 

  • Griggs TC, Lobos KB, Kingery PE (1999) Crop Sci 39:1164–1170

    Article  Google Scholar 

  • Guy F, Prache S, Thomas A, Bauchart D, Andueza D (2011) Food Chem 127:1280–1286

    Article  CAS  Google Scholar 

  • He H, Adams RM, Farkas DF, Morrissey MT (2002) J Food Sci 67:640–645

    Google Scholar 

  • Howgate P (2010) Elect J Environ Agricult Food Chem 9:29–57

    CAS  Google Scholar 

  • Hruschka W (2001) In: Williams P, Norris K (eds) Near-infrared technology: in the agricultural and food industries, 2nd edn. American Association of Analytical Chemists, Gaithersburg, pp 39–58

    Google Scholar 

  • Jay J, Loessner M, and Golden D (2005) Modern Food Microbiology, 7th edn. Springer, New York, pp 101–124

  • Jeong BY, Ohshima T, Koizumi C, Kanou Y (1990) Nippon Suisan Gakkaishi 56:9

    Article  Google Scholar 

  • Josephson DB, Lindsay RC, Stuiber DA (1985) J Food Sci 50:5–9

    Article  CAS  Google Scholar 

  • Karoui R, Downey G, Blecker C (2010) Chem Rev 110:6144–6168

    Article  CAS  Google Scholar 

  • McClure WF (2003) J Near Infrared Spectrosc 11:487–518

    Article  CAS  Google Scholar 

  • Moron A, GarcÃa A, Sawchik J, Cozzolino D (2007) J Sci Food Agric 87:147–152

    Article  CAS  Google Scholar 

  • Murray I, Cowe I (2004) Near-Infrared Spectroscopy in Agriculture. American Society of Agronomy, Madison

    Google Scholar 

  • Nicolai BM, Beullens K, Bobelyn E et al (2007) Postharvest Biol Technol 46:99–118

    Article  Google Scholar 

  • Rafrafi S, Uglow RF (2009) Est Coast Shelf Sci 81:210–214

    Article  Google Scholar 

  • R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rinnan A, Berg F, Engelsen SB (2009) TrAC 28:1201–1222

    CAS  Google Scholar 

  • Rychener JH, Rhodes M, and Woodward B (1985) Proceedings of the 10 Annual Tropical and Subtropical Fisheries Conference of the Americas, pp. 275–290

  • Songsaeng S, Sophanodora P, Kaewsrithong J, Ohshima T (2009) Asian J Food Agro-Industry 2:140–154

    Google Scholar 

  • Uddin M and Okazaki E (2010) Applications of vibrational spectroscopy in food science, Vol 2. Wiley, Chichester

  • Weyer L, and Lo SC (2002) Spectra-structure correlations in the near-infrared, Vol 3. In: Pivonka DE, Chalmers, JM and Griffiths PR (eds) Handbook of Vibrational Spectroscopy. Wiley, Chichester

  • Williams P (2001) In: Williams P, Norris K (eds) Near-infrared technology: in the agricultural and food industries, 2nd edn. American Association of Analytical Chemists, Gaithersburg, pp 145–169

    Google Scholar 

  • Workman J, Weyer L (2008) Practical guide to interpretive near-infrared spectroscopy. CRC, Boca Raton

    Google Scholar 

  • Zhang Z, Li T, Wang D, Zhang L, Chen G (2009) Food Chem 115:1150–1157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Australian Seafood Cooperative Research Centre and Marine Innovations South Australia for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Madigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madigan, T., Kiermeier, A., de Barros Lopes, M. et al. The Effect of Homogenisation and Storage on the Near-Infrared Spectra of Half Shell Pacific Oysters (Crassostrea gigas). Food Anal. Methods 5, 995–1002 (2012). https://doi.org/10.1007/s12161-011-9329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-011-9329-7

Keywords

Navigation