Skip to main content

Advertisement

Log in

Biomass Yield and Nutrient Uptake of Energy Sorghum in Response to Nitrogen Fertilizer Rate on Marginal Land in a Semi-Arid Region

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Energy sorghum tolerates adverse climatic and edaphic conditions and has great potential as biofuel feedstock in marginal land. This study investigates the potential energy sorghum biomass production and uptake of nitrogen (N), phosphorus (P), and potassium (K) on a sandy loam marginal land in a semi-arid region, in order to define optimum N fertilizer rate to produce the highest biomass yield with minimal nutrient elimination. Five N rate treatments (0, 60, 120, 180, and 240 kg ha−1) and two sorghum varieties (sweet type Guotian-8 (GT-8) and biomass type Guoneng-11 (GN-11)) were used. Yield increment was observed as N level increased, but the standout treatment appeared to be N rate of 60 kg ha−1 which significantly increased biomass yield vs. controls by 68.8% in 2014 and 64.1% in 2015. Biomass yield exhibited non-significant differences between N rate treatments from 60 to 240 kg ha−1, although the highest biomass yield (9.2–11.9 t ha−1) was observed in the 120 kg N ha−1 treatment. Nutrient analysis showed that N, P, and K accumulation in aboveground plants increased with N rate increase, ranging between 32.2 and 119.1, 7.9 and 19.2, and 22.1 and 94.0 kg ha−1, respectively, for the highest N rate of 240 kg ha−1. Substantial amounts of N were extracted from the soil in control and 60 kg N ha−1 treatments, despite the low fertility and organic matter content of the soil. Moreover, nitrogen (N) use efficiency (NUE) was maximized at lower N rates. A decline in physiological N use efficiency (PNUE) resulted in decreased agronomic N use efficiency (ANUE) at higher N rates. Hence, it is concluded that N fertilizer rate between 60 and 120 kg ha−1 would be the optimal N requirement to facilitate sustainable production of energy sorghum on a sandy wasteland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

N:

Nitrogen

P:

Phosphorus

K:

Potassium

GT-8:

Guotian-8

GN-11:

Guoneng-11

NUE:

Nitrogen use efficiency

AGDW:

Aboveground dry weight

PFP:

Partial factor productivity

ANUE:

Agronomic nitrogen use efficiency

ANRE:

Apparent nitrogen recovery efficiency

PNUE:

Physiological nitrogen use efficiency

References

  1. Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc B Biol Sci 365:2835–2851

    Article  Google Scholar 

  2. Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, Jin VL (2014) Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLoS One 9:e89501

    Article  PubMed  PubMed Central  Google Scholar 

  3. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  4. Hattori T, Morita S (2010) Energy crops for sustainable ethanol production; which, where and how? Plant Prod Sci 13:221–234

    Article  Google Scholar 

  5. Yan LZ, Zhang L, Wang SQ, Hu L (2008) Potential yields of bio-ethanol from energy crops and their regional distribution in China. Transactions of the Chinese Society of Agricultural Engineering 24:213–216 (in Chinese with English abstract)

    CAS  Google Scholar 

  6. Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. Wiley Series in Crop Science

  7. Teetor VH, Duclos DV, Wittenberg ET, Young KM, Chawhuaymak J, Riley MR, Ray DT (2011) Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Ind Crop Prod 34:1293–1300

    Article  CAS  Google Scholar 

  8. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  PubMed  Google Scholar 

  9. Kangama CO, Rumei X (2005) Introduction of sorghum (Sorghum bicolor (L.) Moench) into China. Afr J Biotechnol 4:575–579

    Google Scholar 

  10. Rajagopal D (2008) Implications of India’s biofuel policies for food, water and the poor. Water Policy 10:95–106

    Article  Google Scholar 

  11. Wortmann CS, Liska AJ, Ferguson RB, Lyon DJ, Klein RN, Dweikat I (2010) Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agron J 102:319–326

    Article  CAS  Google Scholar 

  12. Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T (2011) Sweet sorghum productivity for biofuels under increate soil salinity and reduced irrigation. Field Crops Res 120:38–46

  13. Amaducci S, Monti A, Venturi G (2004) Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Ind Crop Prod 20:111–118

    Article  CAS  Google Scholar 

  14. Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. BioresourTechnol 96:985–1002

    Article  CAS  Google Scholar 

  15. Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res 111:55–64

    Article  Google Scholar 

  16. Liu R, Li J, Shen F (2008) Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renew Energy 33:1130–1135

    Article  CAS  Google Scholar 

  17. Yu J, Zhang X, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89:1056–1059

    Article  CAS  Google Scholar 

  18. Liu SY, Lin CY (2009) Development and perspective of promising energy plants for bioethanol production in Taiwan. Renew Energy 34:1902–1907

    Article  CAS  Google Scholar 

  19. Zhao YL, Steinberger Y, Shi M, Han LP, Xie GH (2012) Changes in stem composition and harvested produce of sweet sorghum during the period from maturity to a sequence of delayed harvest dates. Biomass Bioenergy 39:261–273

    Article  CAS  Google Scholar 

  20. Gao CF, Zhai Y, Ding Y, Wu QY (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  21. Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355

    Article  CAS  Google Scholar 

  22. Cheng X, Zhu WB, Xie GH (2009) Agro-bioenergy and energy crops. J Nat Resour 24:842–848 (in Chinese with abstract in English)

    Google Scholar 

  23. Tian YS, Zhao LX, Meng HB, Sun LY, Yan JY (2009) Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl Energy 86:77–85

    Article  Google Scholar 

  24. Stals H, Inze D (2001) When plant cells decide to divide. Trends Plant Sci 8:359–364

    Article  Google Scholar 

  25. Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403

    Article  CAS  Google Scholar 

  26. Saraswathy R, Suganya S, Singaram P (2007) Environmental impact of nitrogen fertilization in tea eco-system. J Environ Biol 28:779–788

    CAS  PubMed  Google Scholar 

  27. Ramu K, Watanabe T, Uchino H, Sahrawat KL, Wani SP, Ito O (2012) Fertilizer induced nitrous oxide emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics. Sci Total Environ 438:9–14

    Article  CAS  PubMed  Google Scholar 

  28. Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  29. Bolck BR (1984) Efficient use of nitrogen in cropping systems. In: Hauck RD (ed) Nitrogen crop production. American Society of Agronomy, Madison, pp. 273–294

    Google Scholar 

  30. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro–biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem and Phys Discussions 8:389–395

    Article  CAS  Google Scholar 

  31. Smith GA, Buxton DR (1993) Temperate zone sweet sorghum ethanol production potential. Bioresour Technol 43:71–75

    Article  Google Scholar 

  32. Monti A, Venturi G (2003) Comparison of the energy performance of fibre sorghum, sweet sorghum and wheat monocultures in northern Italy. Eur J Agron 19:35–43

    Article  Google Scholar 

  33. Adam CB, Erickson JE, Singh MP (2015) Investigation and synthesis of sweet sorghum crop responses to nitrogen and potassium fertilization. Field Crops Res 178:1–7

    Article  Google Scholar 

  34. Barbanti L, Grandi S, Vecchi A, Venturi G (2006) Sweet and fiber sorghum (Sorghum bicolor (L.) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. Eur J Agron 25:30–39

    Article  Google Scholar 

  35. Tamang PL, Bronson KF, Malapati A, Schwartz R, Johnson J, Moore-Kucera J (2011) Nitrogen requirements for ethanol production from sweet and photoperiod sensitive sorghums in the Southern High Plains. Agron J 103:431–440

    Article  CAS  Google Scholar 

  36. Erickson J, Woodard K, Sollenberger L (2012) Optimizing sweet sorghum production for biofuel in the Southeastern USA through nitrogen fertilization and top removal. Bioenergy Res 5:86–94

    Article  Google Scholar 

  37. Soileau JM, Bradford BN (1985) Biomass and sugar yield response of sweet sorghum to lime and fertilizer. Agron J 77:471–475

    Article  Google Scholar 

  38. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Inc., Sunderland, MA, US, pp. 17–40

    Google Scholar 

  39. Namai S, Toriyama K, Fukuta Y (2009) Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breed Sci 59:269–276

    Article  CAS  Google Scholar 

  40. Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security. A review. Agron Sustain Dev 30:43–55

    Article  CAS  Google Scholar 

  41. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  42. Ehlert P, Morel C, Fotyma M, Destain J (2003) Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J Plant Nutr Soil Sci 166:409–415

    Article  CAS  Google Scholar 

  43. Wolf B (1982) A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    Article  CAS  Google Scholar 

  44. Nelson DW, Sommers LE (1980) Total nitrogen analysis for soil and plant tissues. J Assoc Off Anal Chem 63:770–778

    CAS  Google Scholar 

  45. Jackson ML (1958) Soil chemical analysis. Prentice Hall Inc., Englewood Cliffs, NJ

    Google Scholar 

  46. Holou RAY, Stevens G (2012) Juice, sugar, and bagasse response of sweet sorghum (Sorghum bicolor (L.) Moench cv. M81E) to N fertilization and soil type. GCB Bioenergy 4:302–310

    Article  Google Scholar 

  47. Turgut I, Bilgili U, Duman A, Acikgoz E (2005) Production of sweet sorghum (Sorghum bicolor L. Moench) increases with increased plant densities and nitrogen fertilizer levels. Acta Agric Scand B 55:236–240

    Google Scholar 

  48. Cosentino SL, Patanè C, Mantineo M (1999) Epoca di semina, concimazione azotataed irrigazione in sorgo zuccherino (Sorghum bicolor (L.) Moench) in ambiente mediterraneo. In: Convegno della Società Italiana di Agronomia, 20–23 settembre, Legnaro, Italia, pp. 67–68

  49. Mahmud K, Ahmad I, Ayub M (2003) Effect of nitrogen and phosphorus on the fodder yield and quality of two sorghum cultivars (Sorghum bicolor L.). Int J Agric Biol 5:61–63

    Google Scholar 

  50. Almodares A, Taheri R, Chung M, Fathi M (2008) The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. J Environ Biol 29:849–852

    PubMed  Google Scholar 

  51. Maranville JW, Madhavan S (2002) Physiological adaptations for nitrogen use efficiency in sorghum. Plant Soil 245:25–34

    Article  CAS  Google Scholar 

  52. DeLacy IH, Kaul S, Rana BS, Cooper M (2010) Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India 2. A characterization of genotype × environment interactions. Field Crops Res 118:236–242

    Article  Google Scholar 

  53. Poornima S, Geethalakshmi V, Leelamathi M (2008) Effect of sowing dates and nitrogen levels on yield and juice quality of sweet sorghum. Res J Agric Biol Sci 4:651–654

    CAS  Google Scholar 

  54. Dolciotti I, Mambelli S, Grandi S, Venturi G (1998) Comparison of two sorghum genotypes for sugar and fiber production. Ind Crops Products 7:265–272

    Article  Google Scholar 

  55. Wortmann CS, Mamo M, Doberman A (2007) Nitrogen response to grain sorghum in rotation with soybean. Agron J 99:808–813

    Article  CAS  Google Scholar 

  56. Barker AV, Pilbeam DJ (2007) Handbook of plant nutrition. Taylor & Francis, Boca Raton, pp. 21–120

    Google Scholar 

  57. Rao ACS, Smith JL, Papendick RI, Parr JF (1991) Influence of added nitrogen interactions in estimating recovery efficiency of labeled nitrogen. Soil Sci Soc Am J 55:1616–1621

    Article  Google Scholar 

  58. Dhugga KS, Waines JG (1989) Analysis of nitrogen accumulation and use in bread durum wheat. Crop Sci 29:1232–1239

    Article  Google Scholar 

  59. Han LP, Steinberger Y, Zhao YL, Xie GH (2011) Accumulation and partitioning of nitrogen, phosphorus and potassium in different varieties of sweet sorghum. Field Crops Res 120:230–240

    Article  Google Scholar 

  60. Lu QS, Wang CX, Sun Y, Zhang FY et al (1999) Sorghum. China Agriculture Press, Beijing, pp. 132–141 (in Chinese)

    Google Scholar 

  61. Sieling K, Kage H (2006) N balance as an indicator of N leaching in an oilseed rape–winter wheat–winter barley rotation. Agric Ecosyst Environ 115:261–269

    Article  CAS  Google Scholar 

  62. Fageria N, Baligar V (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    Article  CAS  Google Scholar 

  63. Hao B, Xue Q, Bean BW, Rooney WL, Becker JD (2014) Biomass production, water and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass Bioenergy 62:108–116

    Article  CAS  Google Scholar 

  64. Sinebo W, Gretzmacher R, Edelbauer A (2004) Genotypic variation for nitrogen use efficiency in Ethiopian barley. Field Crops Res 85:43–60

    Article  Google Scholar 

  65. Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  CAS  Google Scholar 

  66. Chardon F, Barthélémy J, Vedele FD, Daubresse CM (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61:2293–2302

    Article  CAS  PubMed  Google Scholar 

  67. Cassman KG, Gines GC, Dizon MA, Samson MI, Alcantara JM (1996) Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Res 47:1–12

    Article  Google Scholar 

  68. Ouedoraogo E, Mando A (2010) Effect of tillage and organic matter quality on sorghum fertilizer use and water use efficiency in semi-arid West Africa. In: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, International Union of Soil Sciences, 1–6 August (Published on DVD), Brisbane, Australia, pp. 143–145

  69. Quezada C, Hernaiz S, Vidal I, Alvarado R, Gallegos R, Yanez W (2013) Selection of rice genotypes (Oryza sativa) with high nitrogen agronomic efficiency in an Acuic Durixererts soil, central-southern Chile. Cienc Investig Agr 40:375–385

    Article  Google Scholar 

  70. Vanlauwe B, Kihara J, Chivenge P, Pypers P, Coe R, Six J (2011) Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 339:35–50

    Article  CAS  Google Scholar 

  71. Mahama GY, Prasad PVV, Mengel DB, Tesso TT (2014) Influence of nitrogen fertilizer on growth and yield of grain sorghum hybrids and inbred lines. Agron J 106:1623–1630

    Article  Google Scholar 

  72. Hons FM, Moresco RF, Wiedenfeld RP, Cothren JT (1986) Applied nitrogen and phosphorus effects on yield and nutrient uptake by high-energy sorghum produced for grain and biomass. Agron J 78:1069–1078

    Article  Google Scholar 

  73. Isfan D (1993) Genotypic variability for physiological efficiency index of nitrogen in oats. Plant Soil 154:53–59

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31470555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Hui Xie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameen, A., Yang, X., Chen, F. et al. Biomass Yield and Nutrient Uptake of Energy Sorghum in Response to Nitrogen Fertilizer Rate on Marginal Land in a Semi-Arid Region. Bioenerg. Res. 10, 363–376 (2017). https://doi.org/10.1007/s12155-016-9804-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9804-5

Keywords

Navigation