Skip to main content

Advertisement

Log in

Potential Analysis of Agro-Municipal Residues as a Source of Renewable Energy

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Declining grassland management in the Austrian Alps demands alternative usage strategies for unused biomass. This case study suggests biogas production as a suitable solution. The study employs a novel calculation scheme to calculate the biogas potentials of grassland and agro-municipal wastes in two model regions. In economic terms, model region one relies heavily on winter and summer tourism with few agricultural operations. Model region two has less intensive tourism and a more prevalent agricultural sector. Using a linear regression model, changes in animal stocks, biogas yields, and energy production were calculated for 2010, 2020, and 2030. Results showed that in 2010, model region one had 1186 t dry matter (DM) a−1 unused grassland biomass, which, combined with other agro-municipal wastes, could have produced 524,580 Nm3 a−1 of methane. Combusting this amount of methane in a CHP would result in 2 GWhel a−1 and 2.2 GWhth a−1. Similarly, including wastes and 557 t DM a−1 unused grassland biomass, model region two could have produced 1,305,892 Nm3 a−1 methane and 4.9 GWhel a−1 and 5.5 GWhth a−1. By 2030, unused grassland biomass is predicted to increase in both regions. Including other organic and agricultural residues, the total methane potential for region one will be 575,784 Nm3 a−1 (+9 %) and 1,769,471 Nm3 a−1 (+36 %) in region two by 2030.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pötsch EM (2009) Multifunktionalität und Bewirtschaftungsvielfalt im österreichischen Grünland. Ländlicher Raum: Oline-Journal Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management 1–22

  2. Bouamra-Mechemache Z, Jongeneel R, Réquillart V (2009) EU dairy policy reforms: Luxembourg reform, WTO negotiations and the quota regime. EuroChoices 8(1):13–22. doi:10.1111/j.1746-692X.2009.00117.x

    Article  Google Scholar 

  3. Buchgraber K (2004) Energetisch und stofflich nutzbare Biomasse aus dem österreichischen Grünland. Biogasproduktion—alternative Biomassenutzung und Energiegewinnung in der Landwirtschaft, 10. Alpenländisches Expertenforum edn. BAL, Irdning

  4. OECD, FAO (2010) OECD-FAO Agricultural-Outlook 2010–2019. Organisation for Economic Co-Operation and Development—Food and Agriculture Organization of the United Nations. Paris, 251 pp

  5. Kempen M, Witzke P, Pérez Domínguez I, Jansson T, Sckokai P (2011) Economic and environmental impacts of milk quota reform in Europe. J Policy Model 3(1):29–52. doi:10.1016/j.jpolmod.2010.10.007

    Article  Google Scholar 

  6. Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (2013) Grüner Bericht 2013. Bericht über die Situation der österreichischen Land− und Forstwirtschaft. Vienna

  7. German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (2007) Climate Change in the Alps. Facts—Impacts—Adaptation. Berlin, 95 pp

  8. Fuhrer J, Calanca P, Deila C, Forrer H-R, Lehmann B, Luder W, Müller-Ferch G, Münger A, Sonnevelt M, Uebersax A (2007) Klimaänderung und die Schweiz 2050. Erwartete Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft. In: OcCc/ProClim (ed). OcCC/ProClim-, Bern, pp 41–52

  9. Bauer A, Lizasoain J, Theuretzbacher F, Agger JW, Rincón M, Menardo S, Saylor MK, Enguídanos R, Nielsen PJ, Gronauer A, Horn SJ (2014) Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresour Technol 166:403–410. doi:10.1016/j.biortech.2014.05.025

    Article  CAS  PubMed  Google Scholar 

  10. Pérez-Elvira SI, Fdz-Polanco F (2012) Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study. Water Sci Technol J Int Assoc Water Pollut Res 65(10):1839–1846. doi:10.2166/wst.2012.863

    Article  Google Scholar 

  11. Sargalski W, Solheim OE, Fjordside C (2007) Treating Organic Waste with CAMBI ® THP. Paper presented at the 12th European Biosolids and Organic Resources Conference. November 2007, Manchester

  12. Prochnow A, Heiermann M, Plöchl M, Linke B, Idler C, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland− A review: 1. Biogas. Bioresour Technol 100(21):4931–4944. doi:10.1016/j.biortech.2009.05.070

    Article  CAS  PubMed  Google Scholar 

  13. Li A, Antizar-Ladislao B, Khraisheh M (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30(3):189–196. doi:10.1007/s00449-007-0114-3

    Article  PubMed  Google Scholar 

  14. Ballesteros I, Oli JM, Negro MJ, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38:187–192. doi:10.1016/S0032-9592(02)00070-5

    Article  CAS  Google Scholar 

  15. Bauer A, Bösch P, Friedl A, Amon T (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol 142(1):50–55. doi:10.1016/j.jbiotec.2009.01.017

    Article  CAS  PubMed  Google Scholar 

  16. Ohgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30(10):863–869. doi:10.1016/j.biombioe.2006.02.002

    Article  Google Scholar 

  17. De Paoli F, Bauer A, Leonhartsberger C, Amon B, Amon T (2011) Utilization of by-products from ethanol production as substrate for biogas production. Bioresour Technol 102(11):6621–6624. doi:10.1016/j.biortech.2011.03.045

    Article  PubMed  Google Scholar 

  18. Horn SJ, Estevez MM, Nielsen HK, Linjordet R, Eijsink VGH (2011) Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresour Technol 102(17):7932–7936. doi:10.1016/j.biortech.2011.06.042

    Article  CAS  PubMed  Google Scholar 

  19. Statistik Austria (2012) Abgestimmte Erwerbsstatistik 2010. http://www.statistik.at/blickgem/ae1/g80113.pdf. Accessed 7 June 2013

  20. Statistik Austria (2014) Agrarstrukturerhebung 2010. STATcube—Statistische Datenbank. http://www.statistik.at/web_de/services/datenbank_superstar/. Accessed 5 January 2013

  21. Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (2006) Richtlinien für die Sachgerechte Düngung. Anleitung zur Interpretation von Bodenuntersuchungsergebnissen in der Landwirtschaft. Bundesministerium für Land− und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna

  22. Kaltschmitt M, Wiese A (1993) Erneuerbare energieträger in Deutschland. Potentiale und kosten. Springer-Verlag, Berlin

    Book  Google Scholar 

  23. Buchgraber K (2000) Ertragspotentiale und Artenvielfalt auf Grünlandstandorten im Berggebiet; MAB-Forschungsbericht: Landschaft und Landwirtschaft im Wandel, Austrian Academy of Sciences, 22–23 September 2000, Vienna, pp 181–189

  24. Döhler H, Eckel H, Fröba N, Grebe S, Hartmann S, Häußermann U, Klages S, Sauer N, Nakazi S, Niebaum A, Roth U, Wirth B, Wulf S, KTBL—Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (Hrsg.): Faustzahlen Biogas. 2. Auflage. Darmstadt: KTBL, 2009 ISBN 978-3-941283-28-3

  25. Johann Heinrich von Thünen-Institut (2009) Biogas-Messprogramm II. 61 Biogasanlagen im Vergleich. Fachagentur Nachwachsende Rohstoffe e.V. (FNR) edn., Gülzow

  26. Effenberger M, Bachmaier H, Kränsel E, Lehner A, Gronauer A (2009) Wissenschaftliche Begleitung der Pilotbetriebe zur Biogasproduktion in Bayern, Abschlussbericht, Schriftenreihe der Bayerische Landesanstalt für Landwirtschaft (LfL), ISSN 161–4159, Freising-Weihenstephan, Germany

  27. Bavarian State Research Center for Agriculture (n.d.), http://www.lfl.bayern.de/iab/duengung/mineralisch/10536/bas13_internet.pdf. Accessed 18 March 2013

  28. Bavarian State Research Center for Agriculture (2011) Nutzung von Grünland zur Biogaserzeugung. Machbarkeitsstudie. Final Report. Freising-Weihenstephan

  29. Steiger R, Abegg B (2013) The sensitivity of Austrian Ski areas to climate change. Tour Plan Dev 10(4):480–493. doi:10.1080/21568316.2013.804431

    Article  Google Scholar 

  30. Buchgraber K, Resch R, Blaschka A (2003) Entwicklung, Produktivität und Perspektiven der österreichischen Grünlandwirtschaft, 9. Alpenländisches Expertenforum, 27.–28. März 2003, BAL Gumpenstein: Das österreichische Berggrünland—ein aktueller Situationsbericht mit Blick in die Zukunft (conference proceeding): 9–18

  31. Frantál B, Kunc J (2011) Wind turbines in tourism landscapes. Ann Tour Res 38(2):499–519. doi:10.1016/j.annals.2010.10.007

    Article  Google Scholar 

  32. NFO World Group (2003) Investigation into the Potential Impact of Wind Farms on Tourism in Wales. Edinburgh, pp 1–21. http://www.ecodyfi.org.uk/tourism/Windfarms_research_eng.pdf/. Accessed 24 February 2015

  33. Pröbstl U, Jiricka A, Hindinger F (2011) Renewable energy in winter sports destinations—desired, ignored or rejected? In: Borsdorf A, Stötter J, Veulliet E (eds) Managing Alpine Future II “Inspire and drive sustainable mountain regions” Proceedings of the Innsbruck Conference, November 21–23, 2011, Innsbruck, ate 2011. Austrian Academy of Sciences Press

  34. Prochnow A, Heiermann M, Plöchl M, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland− A review: 2. Combust Bioresour Technol 100(21):4945–4954. doi:10.1016/j.biortech.2009.05.069

    Article  CAS  Google Scholar 

  35. Rösch C, Raab K, Skarka J, Stelzer V (2007) Energie aus dem Grünland—eine nachhaltige Entwicklung? Forschungszentrum Karlsruhe (Wissenschaftliche Berichte, FZKA 7333), Karlsruhe

  36. Bavarian State Research Center for Agriculture (s.a.) Biogasausbeuten verschiedener Substrate. http://www.lfl.bayern.de/iba/energie/049711/. Accessed 26 April 2013

  37. Panter K, Solheim OE, Fjordside C (2004) Hydrolysis and Digestion of Biodegradable Municipal Waste at Lillehammer, Norway—2 Years Full Scale Experience. CIWM, September 2004, UK

Download references

Acknowledgments

This project was carried out by the alpS—Centre for Climate Change Adaptation. The program of Competence Centers for Excellent Technologies (COMET) is an initiative of the Federal Ministry of Transport, Innovation and Technology and the Federal Ministry of Science, Research and Economy. Additional support for the program came from the federal states of Tyrol and Vorarlberg. The COMET program will be carried by the Austrian Research Promotion Agency (FFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frühauf, S., Saylor, M.K., Lizasoain, J. et al. Potential Analysis of Agro-Municipal Residues as a Source of Renewable Energy. Bioenerg. Res. 8, 1449–1456 (2015). https://doi.org/10.1007/s12155-015-9608-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9608-z

Keywords

Navigation