Skip to main content

Advertisement

Log in

Selective Production of Levoglucosenone from Catalytic Fast Pyrolysis of Biomass Mechanically Mixed with Solid Phosphoric Acid Catalysts

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Solid phosphoric acid (SPA) catalysts with different carriers were prepared and used for catalytic fast pyrolysis of poplar wood to produce levoglucosenone (LGO), a valuable anhydrosugar derivative that can be used in various organic synthesis applications. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were performed to evaluate the catalytic capabilities of these catalysts under different reaction conditions. The results indicated that SPA catalyst prepared with the SBA-15 carrier exhibited the best catalytic capability for selectively producing LGO. Both the catalytic pyrolysis temperature and catalyst-to-biomass ratio affected the pyrolytic products greatly. The maximal LGO yield reached as high as 8.2 wt% from poplar wood, obtained at the pyrolysis temperature of 300 °C and the catalyst-to-biomass ratio of 1. The by-products during the catalytic pyrolysis process were mainly acetic acid (AA) and furfural (FF). In addition, the SPA catalyst possessed better catalytic capability than the liquid phosphoric acid (H3PO4) catalyst to produce LGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang LH, Xu CB, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manage 51:969–982

    Article  CAS  Google Scholar 

  2. Shao SS, Zhang HY, Xiao R et al (2013) Comparison of catalytic characteristics of biomass derivates with different structures over ZSM-5. Bioenergy Res 6:1173–1182

    Article  CAS  Google Scholar 

  3. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  4. Carpenter D, Westover TL, Czernik S et al (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406

    Article  CAS  Google Scholar 

  5. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  6. Mullen C, Boateng A (2011) Production and analysis of fast pyrolysis oils from proteinaceous biomass. Bioenergy Res 4:303–311

    Article  Google Scholar 

  7. Pan SB, Pu YQ, Foston M et al (2013) Compositional characterization and pyrolysis of loblolly pine and Douglas-fir bark. Bioenergy Res 6:24–34

    Article  CAS  Google Scholar 

  8. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  CAS  Google Scholar 

  9. Fabbri D, Torri C, Mancini I (2007) Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chem 9:1374–1379

    Article  CAS  Google Scholar 

  10. Torri C, Lesci IG, Fabbri D (2009) Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate. J Anal Appl Pyrolysis 84:25–30

    Article  CAS  Google Scholar 

  11. Lu Q, Wang Z, Dong CQ et al (2011) Selective fast pyrolysis of biomass impregnated with ZnCl2: furfural production together with acetic acid and activated carbon as by-products. J Anal Appl Pyrolysis 91:273–279

    Article  CAS  Google Scholar 

  12. Lu Q, Dong CQ, Zhang XM et al (2011) Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study. J Anal Appl Pyrolysis 90:204–212

    Article  CAS  Google Scholar 

  13. Oh SJ, Jung SH, Kim JS (2013) Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor. Bioresour Technol 144:172–178

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Liu X, Lu M et al (2014) Role of Brønsted acid in selective production of furfural in biomass pyrolysis. Bioresour Technol 169:800–803

    Article  CAS  PubMed  Google Scholar 

  15. Qu YC, Wang Z, Lu Q et al (2013) Selective production of 4-vinylphenol by fast pyrolysis of herbaceous biomass. Ind Eng Chem Res 52:12771–12776

    Article  CAS  Google Scholar 

  16. Mullen CA, Boateng AA, Schweitzer D et al (2014) Mild pyrolysis of P3HB/switchgrass blends for the production of bio-oil enriched with crotonic acid. J Anal Appl Pyrolysis 107:40–45

    Article  CAS  Google Scholar 

  17. Kamarudin SK, Shamsul NS, Ghani JA et al (2013) Production of methanol from biomass waste via pyrolysis. Bioresour Technol 129:463–468

    Article  CAS  PubMed  Google Scholar 

  18. Lu Q, Xiong WM, Li WZ et al (2009) Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Bioresour Technol 100:4871–4876

    Article  CAS  PubMed  Google Scholar 

  19. Piskorz J, Majerski P, Radlein D et al (2000) Flash pyrolysis of cellulose for production of anhydro-oligomers. J Anal Appl Pyrolysis 56:145–166

    Article  CAS  Google Scholar 

  20. McGrath TE, Brown AP, Meruva NK et al (2009) Phenolic compound formation from the low temperature pyrolysis of tobacco. J Anal Appl Pyrolysis 84:170–178

    Article  CAS  Google Scholar 

  21. Bu Q, Lei HW, Ren SJ et al (2012) Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour Technol 108:274–279

    Article  CAS  PubMed  Google Scholar 

  22. Bu Q, Lei HW, Wang L et al (2013) Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour Technol 142:546–552

    Article  CAS  PubMed  Google Scholar 

  23. Lu Q, Zhang ZB, Yang XC et al (2013) Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: analytical Py-GC/MS study. J Anal Appl Pyrolysis 104:139–145

    Article  CAS  Google Scholar 

  24. Srinivasan V, Adhikari S, Chattanathan SA et al (2012) Catalytic pyrolysis of torrefied biomass for hydrocarbons production. Energy Fuel 26:7347–7353

    Article  CAS  Google Scholar 

  25. Zhang M, Resende FLP, Moutsoglou A (2014) Catalytic fast pyrolysis of aspen lignin via Py-GC/MS. Fuel 116:358–369

    Article  CAS  Google Scholar 

  26. Carlson TR, Tompsett GA, Conner WC et al (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252

    Article  CAS  Google Scholar 

  27. Srinivasan V, Adhikari S, Chattanathan S et al (2014) Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites. Bioenergy Res 7:1–9

    Article  Google Scholar 

  28. Zhang HY, Xiao R, Jin BS et al (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262

    Article  CAS  PubMed  Google Scholar 

  29. Takashi H, Haruo K, Shiro S (2009) Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products. J Anal Appl Pyrolysis 85:237–246

    Article  Google Scholar 

  30. Dong CQ, Zhang ZF, Lu Q et al (2012) Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers Manag 57:49–59

    Article  CAS  Google Scholar 

  31. Kudo S, Zhou ZW, Norinaga K et al (2011) Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chem 13:3306–3311

    Article  CAS  Google Scholar 

  32. Sui XW, Wang Z, Liao B et al (2012) Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature. Bioresour Technol 103:466–469

    Article  CAS  PubMed  Google Scholar 

  33. Dobele G, Dizhbite T, Rossinskaja G et al (2003) Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1,6-anhydrosaccharides in high yields. J Anal Appl Pyrolysis 68–69:197–211

    Article  Google Scholar 

  34. Lu Q, Yang XC, Dong CQ et al (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438

    Article  CAS  Google Scholar 

  35. Urabe D, Nishikawa T, Isobe M (2006) An efficient total synthesis of optically active tetrodotoxin from levoglucosenone. Chem Asian J 1–2:125–135

    Article  Google Scholar 

  36. Witczak ZJ, Chhabra R, Chojnacki J (1997) C-Disaccharides I. Stereoselective approach to β-(1-4)-3-deoxy-C-disaccharides from levoglucosenone. Tetrahedron Lett 38:2215–2218

    Article  CAS  Google Scholar 

  37. Muller C, Frau MAGZ, Ballinari D et al (2009) Design, synthesis, and biological evaluation of levoglucosenone-derived ras activation inhibitors. ChemMedChem 4:524–528

    Article  PubMed  Google Scholar 

  38. Zanardi MM, Suarez AG (2009) Synthesis of a simple chiral auxiliary derived from levoglucosenone and its application in a Diels–Alder reaction. Tetrahedron Lett 50:999–1002

    Article  CAS  Google Scholar 

  39. Sarotti AM, Zanardi MM, Spanevello RA (2012) Recent applications of levoglucosenone as chiral synthon. Curr Org Synth 9:439–459

    Article  CAS  Google Scholar 

  40. Witczak ZJ, Mielguj R (1996) A convenient synthesis of the (+) enantiomer of levoglucosenone and its 5-hydroxymethyl analog. Synlett 1:108–110

    Article  Google Scholar 

  41. Shibagaki M, Takahashi K, Kuno H et al (1990) Synthesis of levoglucosenone. Chem Lett 19:307–310

    Article  Google Scholar 

  42. Dobele G, Rossinskaja G, Dizhbite T et al (2005) Application of catalysts for obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J Anal Appl Pyrolysis 74:401–405

    Article  CAS  Google Scholar 

  43. Branca C, Galgano A, Blasi C et al (2011) H2SO4-catalyzed pyrolysis of corncobs. Energy Fuel 25:359–369

    Article  CAS  Google Scholar 

  44. Wang Z, Lu Q, Zhu XF et al (2011) Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. ChemSusChem 4:79–84

    Article  CAS  PubMed  Google Scholar 

  45. Lu Q, Zhang XM, Zhang ZB et al (2012) Catalytic fast pyrolysis of cellulose mixed with sulfated titania to produce levoglucosenone: analytical Py-GC/MS study. Bioresources 7:2820–2834

    Article  CAS  Google Scholar 

  46. Wei XL, Wang Z, Wu Y et al (2014) Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone. J Anal Appl Pyrolysis 107:150–154

    Article  CAS  Google Scholar 

  47. Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis 80:118–125

    Article  CAS  Google Scholar 

  48. Ranganathan S, Macdonald DG, Bakhshi NN (1985) Kinetic studies of wheat straw hydrolysis using sulphuric acid. Can J Chem Eng 63:840–844

    Article  CAS  Google Scholar 

  49. Zhao DY, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

  50. Lu Q, Tang Z, Zhang Y et al (2010) Catalytic upgrading of biomass fast pyrolysis vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res 49:2573–2580

    Article  CAS  Google Scholar 

  51. Gao NB, Li AM, Quan C et al (2013) TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrolysis 100:26–32

    Article  CAS  Google Scholar 

  52. Gu XL, Ma X, Li LX et al (2013) Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J Anal Appl Pyrolysis 102:16–23

    Article  CAS  Google Scholar 

  53. Fu QR, Argyropoulos DS, Tilotta DC et al (2008) Understanding the pyrolysis of CCA-treated wood. Part II. Effect of phosphoric acid. J Anal Appl Pyrolysis 82:140–144

    Article  CAS  Google Scholar 

  54. Lu Q, Ye XN, Zhang ZB et al (2014) Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO4 2−/TiO2–Fe3O4. Bioresour Technol 171:10–15

    Article  CAS  PubMed  Google Scholar 

  55. Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol 100:6496–6504

    Article  CAS  PubMed  Google Scholar 

  56. Shen DK, Gu S, Bridgwater AV (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J Anal Appl Pyrolysis 87:199–206

    Article  CAS  Google Scholar 

  57. Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 4:636–643

    Article  CAS  PubMed  Google Scholar 

  58. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  59. Mukarakate C, Watson MJ, Dam JT et al (2014) Upgrading biomass pyrolysis vapors over β-zeolites: role of silica-to-alumina ratio. Green Chem 16:4891–4905

    Article  CAS  Google Scholar 

  60. Mullen CA, Boateng AA (2010) Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol 91:1446–1458

    Article  CAS  Google Scholar 

  61. Mettler MS, Paulsen AD, Vlachos DG et al (2012) Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy Environ Sci 5:7864–7868

    Article  CAS  Google Scholar 

  62. Halpern Y, Riffer R, Broido A (1973) Levoglucosenone (1,6-anhydro-3,4-dideoxy-Δ3-β-D-pyranosen-2-one). A major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem 38:204–209

    Article  CAS  Google Scholar 

  63. Furneaux RH, Mason JM, Miller IJ (1988) A novel hydroxylactone from the Lewis acid catalyzed pyrolysis of cellulose. J Chem Soc Perkin Trans 1(1):49–51

    Article  Google Scholar 

  64. Krawietz TR, Lin P, Lotterhos KE et al (1998) Solid phosphoric acid catalyst: a multinuclear NMR and theoretical study. J Am Chem Soc 120:8502–8511

    Article  CAS  Google Scholar 

  65. Coetzee JH, Mashapa TN, Prinsloo NM et al (2006) An improved solid phosphoric acid catalyst for alkene oligomerization in a Fischer–Tropsch refinery. Appl Catal A 308:204–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National High Technology R&D Program (2012AA051803), National Natural Science Foundation of China (51276062), 111 Project (B12034), Foundation of State Key Laboratory of Coal Combustion (FSKLCC1413), and Fundamental Research Funds for the Central Universities (13ZP02, 2014ZD17) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zb., Lu, Q., Ye, Xn. et al. Selective Production of Levoglucosenone from Catalytic Fast Pyrolysis of Biomass Mechanically Mixed with Solid Phosphoric Acid Catalysts. Bioenerg. Res. 8, 1263–1274 (2015). https://doi.org/10.1007/s12155-015-9581-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9581-6

Keywords

Navigation