Skip to main content
Log in

Genetic and Morphometric Analysis of Cob Architecture and Biomass-Related Traits in the Intermated B73 × Mo17 Recombinant Inbred Lines of Maize

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Expected future cellulosic ethanol production increases the demand for biomass in the US Corn Belt. With low nutritious value, low nitrogen content, and compact biomass, maize cobs can provide a significant amount of cellulosic materials. The value of maize cobs depends on cob architecture, chemical composition, and their relation to grain yield as primary trait. Eight traits including cob volume, fractional diameters, length, weight, tissue density, and grain yield have been analyzed in this quantitative trait locus (QTL) mapping experiment to evaluate their inheritance and inter-relations. One hundred eighty-four recombinant inbred lines of the intermated B73 × Mo17 (IBM) Syn 4 population were evaluated from an experiment carried out at three locations and analyzed using genotypic information of 1,339 public SNP markers. QTL detection was performed using (1) comparison-wise thresholds with reselection of cofactors (α = 0.001) and (2) empirical logarithm of odds score thresholds (P = 0.05). Several QTL with small genetic effects (R 2 = 2.9–13.4 %) were found, suggesting a complex quantitative inheritance of all traits. Increased cob tissue density was found to add value to the residual without a commensurate negative impact on grain yield and therefore enables for simultaneous selection for cob biomass and grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halvorson AD, Johnson JMF (2009) Corn cob characteristics in irrigated central great plains studies. Agron J 101(2):390

    Article  CAS  Google Scholar 

  2. Jansen C, Lübberstedt T (2012) Turning maize cobs into a valuable feedstock. BioEnergy Res 5(1):20–31

    Article  Google Scholar 

  3. Zych D (2008) The viability of corn cobs as a bioenergy feedstock. http://renewables.morris.umn.edu/biomass/documents/Zych-TheViabilityOfCornCobsAsABioenergyFeedstock.pdf. Accessed 15 May 2012

  4. Foley KM, Vander Hooven DIB (1981) Properties and industrial uses of corncobs. In: Pomeranz Y, Munck L (eds) Cereals—a renewable resource—theory and practice. The American Association of Cereal Chemists, St. Paul

    Google Scholar 

  5. Lenz LW (1948) Comparative histology of the female inflorescence of Zea mays L. Ann Mo Bot Gard 34(4):353–376

    Article  Google Scholar 

  6. Ross AJ (2002) Genetic analysis of ear length and correlated traits in maize. Dissertation, Iowa State University

  7. Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  8. Lorenzana RE, Lewis MF, Jung HJG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50(2):541–555

    Article  Google Scholar 

  9. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  10. Veldboom LR, Lee M, Woodman WL (1994) Molecular marker-facilitated studies in an elite maize population: I. linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88:7–16, Theoretische und angewandte Genetik

    Article  CAS  Google Scholar 

  11. Upadyayula N, da Silva HS Bohn MO, Rocheford TR (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. TAG Theor Appl Genet 112(4):592–606, Theoretische und angewandte Genetik

    Article  CAS  Google Scholar 

  12. Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield and yield components. Crop Sci 36:1310–1319

    Article  CAS  Google Scholar 

  13. Zhang H, Zheng Z, Liu X, Li Z, He C, Liu D et al (2010) QTL mapping for ear length and ear diameter under different nitrogen regimes in maize. Afr J Agric Res 5(8):626–630

    Google Scholar 

  14. Li M, Guo X, Zhang M, Wang X, Zhang G, Tian Y et al (2010) Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci 178(5):454–462

    Article  CAS  Google Scholar 

  15. Wang Y, Yao J, Zhang Z, Zheng Y (2006) The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull 51(18):2219–2230

    Article  CAS  Google Scholar 

  16. Marsan PA, Gorni C, Chittò A, Redaelli R, van Vijk R, Stam P, Mottoet M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. TAG Theor Appl Genet 102(2–3):230–243, Theoretische und angewandte Genetik

    Article  CAS  Google Scholar 

  17. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  18. Lee M, Sharopova N, Beavis WD, Grant D, Maria Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population. Plant Mol Biol 48(5–6):453–461

    Article  PubMed  CAS  Google Scholar 

  19. Nelson PT, Coles ND, Holland JB, Bubeck DM, Smith S, Goodman MM (2008) Molecular characterization of maize inbreds with expired U.S. plant variety protection. Crop Sci 48(5):1673–1685

    Article  Google Scholar 

  20. Schnable et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  PubMed  CAS  Google Scholar 

  21. Abertondo VJ (2007) Phenotypic analysis of intermated B73 x Mo17 (IBM) populations, Master Thesis, Iowa State University

  22. Lorenz AJ, Coors JG, Hansey CN, Kaeppler SM, de Leon N (2010) Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (L.). Crop Sci 50(3):842–852

    Article  CAS  Google Scholar 

  23. Holland JB (2006) Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci 46(2):642–654

    Article  Google Scholar 

  24. Arbuckle JL (2006) Amos 7.0 user’s guide. SPSS, Chicago

    Google Scholar 

  25. Wright S (1934) The methods of path coefficients. Ann Math Stat 5(3):161–215

    Article  Google Scholar 

  26. Wright S (1921) Correlation and causation. J Agric Res 20(7):557–585

    Google Scholar 

  27. Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  28. Lauter N, Moscou MJ, Habiger J, Moose SP (2008) Quantitative genetic dissection of shoot architecture traits in maize: towards a functional genomics approach. Plant Genome J 1(2):99–110

    Article  CAS  Google Scholar 

  29. Mangin B, Goffinet B, Rebaï A (1994) Constructing confidence intervals for QTL location. Genetics 138(4):1301–1308

    PubMed  CAS  Google Scholar 

  30. Bohn M, Novais J, Fonseca R, Tuberosa R, Grift TE (2006) Genetic evaluation of root complexity in maize. Acta Agron Hung 54(3):291–303

    Article  CAS  Google Scholar 

  31. Kearsey MJ, Farquhar AGL (1998) Short Review QTL analysis in plants; where are we now ? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  32. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109(4):1193–1198

    Article  PubMed  CAS  Google Scholar 

  33. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9(4):255–266

    Article  PubMed  CAS  Google Scholar 

  34. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149(1):383–403

    PubMed  CAS  Google Scholar 

  35. Openshaw S, Frascaroli E (1997) QTL detection and marker-assisted selection for complex traits in maize. 52nd Annual Corn and Sorghum Research Conference, pp 44–53

  36. Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165(4):2259–2268

    PubMed  Google Scholar 

  37. Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167(1):485–498

    Article  PubMed  Google Scholar 

  38. Wassom JJ, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, Mikkilineni V, Bohn MO, Rocheford TR (2008) QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois High Oil × B73 backcross-derived lines. Crop Sci 48(1):243–252

    Article  Google Scholar 

  39. Da Silva HSP (2009) Genetic, genomic, and breeding approaches to further explore kernel composition traits and grain yield in maize. Dissertation, University of Illinois, Urbana–Champaign

  40. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7(11):e1002383

    Article  PubMed  CAS  Google Scholar 

  41. Vollbrecht E, Schmidt R (2009) Development of the inflorescences. In: Bennetzen J, Hake S (eds) Handbook of maize: its biology. Springer, New York

    Google Scholar 

  42. Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436(7054):1119–1126

    Article  PubMed  CAS  Google Scholar 

  43. Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt RJ (2010) The control of axillary meristem fate in the maize ramosa pathway. Development 137:2849–2856

    Article  PubMed  CAS  Google Scholar 

  44. Forestan C, Varotto S (2011) The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Molecular Plant 1–12 doi:10.1093/mp/ssr103. http://mplant.oxfordjournals.org/content/early/2011/12/19/mp.ssr103.full.pdf+html?sid=fd6b8c44-6f44-4678-ad86-ca85662e493a. Accessed 15 May 2012

  45. Reese M (2009) Corn cobs for ethanol production process heating: a feasibility report of collection, storage and use of corn cobs as a renewable ethanol production process heating fuel. http://www.auri.org/research/CVEC_Final_Report_to_Office_of_Energy_Security_30.pdf. Accessed 15 May 2012

  46. Sawyer J, Mallarino A, Hanway JJ (2007) Nutrient removal when harvesting corn stover. Iowa State University Research. Integrated Crop. http://www.ipm.iastate.edu/ipm/icm/2007/8-6/nutrients.html. Accessed 15 May 2012

  47. Hoffman LD, USDA, Available from: http://www.ers.usda.gov/data/priceforecast/ Accessed: 5 June, 2012

  48. Hallauer AR, Ross AJ, Lee M (2010) Long-term divergent selection for ear length in maize. Plant breeding reviews: long-term selection: crops, animals, and bacteria. Wiley, New York

  49. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  CAS  Google Scholar 

  50. Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Jansen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 13.5 KB)

ESM 2

(DOCX 23.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, C., de Leon, N., Lauter, N. et al. Genetic and Morphometric Analysis of Cob Architecture and Biomass-Related Traits in the Intermated B73 × Mo17 Recombinant Inbred Lines of Maize. Bioenerg. Res. 6, 903–916 (2013). https://doi.org/10.1007/s12155-013-9319-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9319-2

Keywords

Navigation