Skip to main content
Log in

Sobol’ sensitivity analysis of parameters in the common land model for simulation of water and energy fluxes

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The water and energy transfer of land surface is complex due to its large spatial and temporal variability. The modeling and simulation is an important means to study land water and energy transfer, but most selection and analysis of model parameters are empirical and qualitative. This paper has proposed a method of quantitatively identifying the most influential parameters of Common Land Model through Sobol’ sensitivity analysis. Considering sensible heat flux as the model output, the first order and total sensitivity indices of 25 model input parameters are estimated using an improved Sobol’ method. The simulated results are resampled using a bootstrapping method and the corresponding sensitivity indices are calculated. Confidence intervals for the bootstrapping sensitivity indices are estimated by using a percentile method. The results show that the parameters phi0 and porsl are the most important parameters, followed by ref(2,1), tran(2,1) and bsw. Five out of 25 parameters need to have an accurate evaluation, while the other parameters are fixed to a certain value. The sensitivity indices of parameters phi0 and porsl are decreasing after precipitation, while the sensitivity indices of parameters tran(2, 1) and ref(2, 1) are increasing after precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Choi M, Lee SO, Kwon H (2010) Understanding of the common land model performance for water and energy fluxes in a farmland during the growing season in Korea. Hydrol Process 24(8):1063–1071. doi:10.1002/hyp. 7567

    Article  Google Scholar 

  • Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol Process 24(9):1133–1148. doi:10.1002/hyp. 7568

    Article  Google Scholar 

  • Crucifix M, Betts RA, Cox PM (2005) Vegetation and climate variability: a GCM modelling study. Clim Dyn 24(5):457–467. doi:10.1007/s00382-004-0504-z

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE (2001) The common land model: technical documentation and user’s guide

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84(8):1013–1023. doi:10.1175/bams-84-8-1013

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  • Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  • Ivanovska S, Atanassov E, Karaivanova A (2005) A superconvergent Monte Carlo method for multiple integrals on the grid. LNCS 3516:735–742

    Google Scholar 

  • Karaivanova A, Dimov I, Ivanovska S (2001) A Quasi-Monte Carlo method for integration with improved convergence. LNCS 2179:158–165

    Google Scholar 

  • Kucherenko S, Rodriguez-Fernandez M, Pantelides C, Shah N (2009) Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab Eng Syst Saf 94(7):1135–1148. doi:10.1016/j.ress.2008.05.006

    Article  Google Scholar 

  • Liang X, Dai Y (2008) A sensitivity study of the common land model on soil texture and soil brightness. Clim Environ Res (in Chinese) 13(5):585–597

    Google Scholar 

  • Liang X, Wood EF, Lettenmaier DP, Lohmann D, Boone A, Chang S, Chen F, Dai Y, Desborough C, Dickinsonh RE, Duan Q, Ek M, Gusev YM, Habets F, Irannejad P, Koster R, Mitchell KE, Nasonova ON, Noilhan J, Schaake J, Schlosser A, Shao Y, Shmakin AB, Verseghy D, Warrach K, Wetzel P, Xue Y, Yang Z-L, Zeng Q-C (1998) The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red-Arkansas river basin experiment: 2. Spatial and temporal analysis of energy fluxes. Glob Planet Chang 19:137–159

    Article  Google Scholar 

  • Luo S, Lu S, Zhang Y, Hu Z, Ma Y, Li S, Shang L (2008) Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM. Plateau Meteorol (in Chinese) 27(2):259–271

    Google Scholar 

  • Mölders N (2005) Plant- and soil-parameter-caused uncertainty of predicted surface fluxes. Mon Weather Rev 133(12):3498–3516

    Article  Google Scholar 

  • Moulin S, Bondeau A, Delecolle R (1998) Combining agricultural crop models and satellite observations: from field to regional scales. Int J Remote Sens 19:1021–1036

    Article  Google Scholar 

  • Nossent J, Elsen P, Bauwens W (2011) Sobol’ sensitivity analysis of a complex environmental model. Environ Model Softw 26(12):1515–1525. doi:10.1016/j.envsoft.2011.08.010

    Article  Google Scholar 

  • Prihodko L, Denning AS, Hanan NP, Baker I, Davis K (2008) Sensitivity, uncertainty and time dependence of parameters in a complex land surface model. Agric For Meteorol 148(2):268–287. doi:10.1016/j.agrformet.2007.08.006

    Article  Google Scholar 

  • Rosero E, Yang Z-L, Wagener T, Gulden LE, Yatheendradas S, Niu G-Y (2010) Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J Geophys Res 115(D3):doi:10.1029/2009jd012035

  • Rosolem R, Gupta HV, Shuttleworth WJ, Zeng X, de Gonçalves LGG (2012) A fully multiple-criteria implementation of the Sobol’ method for parameter sensitivity analysis. J Geophys Res 117(D7):doi:10.1029/2011jd016355

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  Google Scholar 

  • Saltelli A, Tarantola S (2002) On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal, vol 97. vol 459. American Statistical Association, Alexandria, VA, ETATS-UNIS

  • Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270. doi:10.1016/j.cpc.2009.09.018

    Article  Google Scholar 

  • Sobol’ IM (1976) Uniformly distributed sequences with an additional uniform property. USSR Comput Maths Math Phys 16:236–242 (in English)

    Article  Google Scholar 

  • Sobol’ IM (1990) On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie: 2(1):112–118

    Google Scholar 

  • Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  Google Scholar 

  • Sobol’ IM (2007) Global sensitivity analysis indices for the investigation of nonlinear mathematical models. Matematicheskoe Modelirovanie 19(11):23–24, in Russian

    Google Scholar 

  • Sobol’ IM, Tarantola S, Gatelli D, Kucherenko SS, Mauntz W (2007) Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab Eng Syst Saf 92(7):957–960. doi:10.1016/j.ress.2006.07.001

    Article  Google Scholar 

  • Sridhar V (2002) Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J Geophys Res 107(D20):doi:10.1029/2001jd001306

  • Tang Y, Reed P, Wagener T, Werkhoven KV (2006) Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrol Earth Syst Sci Discuss 3:3333–3395

    Article  Google Scholar 

  • Xin Y, Bian L, Zhang X (2006) The application of CoLM to Arid region of Northwest China and Qinghai-Xizang Plateau. Plateau Meteorol (in Chinese) 25(4):567–574

    Google Scholar 

  • Yang J (2011) Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ Model Softw 26(4):444–457. doi:10.1016/j.envsoft.2010.10.007

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable suggestions to improve this paper. This work is jointly supported by the Research Foundation for the Excellent State Key Lab from the National Natural Science Foundation of China (No. 41023001), the National Basic Research Program of China (No. 2011CB707103), the National Natural Science Foundation of China (No. 41171313) and the Ph.D. Research Fund of Wuhan University (NO. 2012619020202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Xu.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Shu, H., Jiang, H. et al. Sobol’ sensitivity analysis of parameters in the common land model for simulation of water and energy fluxes. Earth Sci Inform 5, 167–179 (2012). https://doi.org/10.1007/s12145-012-0105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-012-0105-z

Keywords

Navigation