Skip to main content
Log in

1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis

Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

The chitin-active 19.2 kDa lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis has been isotopically labeled and recombinantly expressed. In this paper, we report the 1H, 13C, 15N resonance assignment of BlLPMO10A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aachmann FL, Sørlie M, Skjåk-Bræk G et al (2012) NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci USA 109:18779–18784. doi:10.1073/pnas.1208822109

    Article  ADS  Google Scholar 

  • Berg L, Lale R, Bakke I et al (2009) The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5′-untranslated part of mRNA. Microb Biotechnol 2:379–389. doi:10.1111/j.1751-7915.2009.00107.x

    Article  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483. doi:10.1002/pro.689

    Article  Google Scholar 

  • Forsberg Z, Røhr AK, Mekasha S et al (2014) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656. doi:10.1021/bi5000433

    Article  Google Scholar 

  • Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699. doi:10.1093/nar/gkq313

    Article  Google Scholar 

  • Harris PV, Welner D, McFarland KC et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. doi:10.1021/bi100009p

    Article  Google Scholar 

  • Hemsworth GR, Davies GJ, Walton PH (2013a) Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 23:660–668. doi:10.1016/j.sbi.2013.05.006

    Article  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ et al (2013b) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135:6069–6077. doi:10.1021/ja402106e

    Article  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126. doi:10.1038/nchembio.1417

    Article  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. doi:10.1186/1754-6834-5-45

    Article  Google Scholar 

  • Karkehabadi S, Hansson H, Kim S et al (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J Mol Biol 383:144–154. doi:10.1016/j.jmb.2008.08.016

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, Goldau

    Google Scholar 

  • Kim S, Ståhlberg J, Sandgren M et al (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 111:149–154. doi:10.1073/pnas.1316609111

  • Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41

    Article  Google Scholar 

  • Li X, Beeson WT, Phillips CM et al (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061. doi:10.1016/j.str.2012.04.002

    Article  Google Scholar 

  • McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600. doi:10.1093/nar/gkt376

    Article  Google Scholar 

  • Moser F, Irwin D, Chen S, Wilson DB (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077. doi:10.1002/bit.21856

    Article  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406. doi:10.1021/cb200351y

  • Quinlan RJ, Sweeney MD, Leggio LL et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084. doi:10.1073/pnas.1105776108

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  Google Scholar 

  • Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539. doi:10.1038/msb.2011.75

    Article  Google Scholar 

  • Sletta H, Tøndervik A, Hakvåg S et al (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol 73:906–912. doi:10.1128/AEM.01804-06

    Article  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, van Aalten DMF et al (2005a) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497. doi:10.1074/jbc.M504468200

    Article  Google Scholar 

  • Vaaje-Kolstad G, Houston DR, Riemen AHK et al (2005b) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319. doi:10.1074/jbc.M407175200

    Article  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. doi:10.1126/science.1192231 (80-)

    Article  ADS  Google Scholar 

  • Vaaje-Kolstad G, Bøhle LA, Gåseidnes S et al (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 416:239–254. doi:10.1016/j.jmb.2011.12.033

    Article  Google Scholar 

  • Wu M, Beckham GT, Larsson AM et al (2013) Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 288:12828–12839. doi:10.1074/jbc.M113.459396

    Article  Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Norwegian Research Council (NFR) grant 214138, BioTek2021 grant 217708/O10 and the VISTA program of the Norwegian Academy of Science and Letters, Grant 6505.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn L. Aachmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtade, G., Balzer, S., Forsberg, Z. et al. 1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis . Biomol NMR Assign 9, 207–210 (2015). https://doi.org/10.1007/s12104-014-9575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-014-9575-x

Keywords

Navigation