Skip to main content

Advertisement

Log in

Peptidomimetics in cancer chemotherapy

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

A summary of the current status of the application of peptidomimetics in cancer therapeutics as an alternative to peptide drugs is provided. Only compounds that are used in therapy or at least under clinical trials are discussed, using inhibitors of farnesyltransferase, proteasome and matrix metalloproteinases as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283

    Article  PubMed  CAS  Google Scholar 

  2. Tarasova NI (2004) Peptides and peptidomimetics as anti-cancer therapeutics. Curr Pharm Design 10:1–3

    Article  Google Scholar 

  3. Walensky LD, Kung AL, Escher I et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    Article  PubMed  CAS  Google Scholar 

  4. Reuter CWM, Morgan MA, Bergmann L (2000) Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96:1655–1669

    PubMed  CAS  Google Scholar 

  5. Adjei AA (2001) Ras signaling pathway proteins as therapeutic targets. Curr Pharm Design 7:1581–1594

    Article  CAS  Google Scholar 

  6. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nature Rev Cancer 3:11–22

    Article  CAS  Google Scholar 

  7. Russo P, Loprevite M, Cesario A, Ardizzoni A (2004) Farnesylated proteins as anticancer drug targets: from laboratory to the clinic. Curr Med Chem Anticancer Agents 4:123–138

    Article  PubMed  CAS  Google Scholar 

  8. Leonard DM (1997) Ras farnesyltransferase: a new therapeutic target. J Med Chem 40:2971–2990

    Article  PubMed  CAS  Google Scholar 

  9. Johnston SRD (2001) Farnesyl transferase inhibitors: a novel targeted therapy for cancer. Lancet Oncol 2:18–26

    Article  PubMed  CAS  Google Scholar 

  10. Bell IM (2004) Inhibitors of farnesyltransferase: a rational approach to cancer chemotherapy? J Med Chem 47:1869–1878

    Article  PubMed  CAS  Google Scholar 

  11. Le DT, Shannon KM (2002) Ras processing as a therapeutic target in hematologic malignancies. Curr Opin Hematol 9:pp308–315

    Article  PubMed  Google Scholar 

  12. Caponigro F, Casale M, Bryce J (2004) Farnesyl transferase inhibitors in clinical development. Expert Opin Investig Drugs 12:943–954

    Article  Google Scholar 

  13. Santucci R, Mackley PA, Sebti S, Alsina M (2003) Farnesyltransferase inhibitors and their role in the treatment of multiple myeloma. Cancer Control 10:384–387

    PubMed  Google Scholar 

  14. Rao S, Cunningham D, de Gramont A et al (2004) Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor r115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22:3950–3957

    Article  PubMed  CAS  Google Scholar 

  15. Lobell RB, Liu D, Buser CA et al (2002) Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Mol Cancer Ther 1:747–758

    PubMed  CAS  Google Scholar 

  16. Khuri FR, Glisson BS, Kim ES et al (2004) Phase I study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in solid tumors. Clin Cancer Res 10:2968–2976

    Article  PubMed  CAS  Google Scholar 

  17. Reid TS, Beese LS (2004) Crystal structures of the anti-cancer clinical candidates R115777 (Zarbestra®/tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest mechanism of FTI selectivity. Biochemistry 43:6877–6884

    Article  PubMed  CAS  Google Scholar 

  18. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  PubMed  CAS  Google Scholar 

  19. Myung J, Kim KB, Crews CM (2001) Proteasome inhibition: mechanism and inhibitors. Med Res Rev 21:245–273

    Article  PubMed  CAS  Google Scholar 

  20. Garcá-Echeverría C (2002) Recent advances in the identification and development of 20S proteasome inhibitors. Mini-Rev Med Chem 2:247–259

    Article  Google Scholar 

  21. Boccadoro M, Morgan G, Cavenagh J (2005) Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5:18–26

    Article  PubMed  Google Scholar 

  22. Paramore A, Frantz S (2003) Bortezomib. Nat Rev Drug Discov 2:611–612

    Article  PubMed  CAS  Google Scholar 

  23. Adams J, Behnke M, Chen S et al (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338

    Article  PubMed  CAS  Google Scholar 

  24. Groll M, Kim KB, Kairies N et al (2000) Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors. J Am Chem Soc 122:1237–1238

    Article  CAS  Google Scholar 

  25. Gourley M, Williamson JS (2000) Angiogenesis: new targets for the development of anticancer chemotherapies. Curr Pharm Design 6:417–439

    Article  CAS  Google Scholar 

  26. Dhanabal M, Jeffers M, LaRochelle WJ (2005) Anti-angiogenic therapy as a cancer treatment paradigm. Curr Med Chem Anti-Canc Agents 5:115–130

    Article  CAS  Google Scholar 

  27. Rao BG (2005) Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Design 11:295–322

    Article  CAS  Google Scholar 

  28. Borkakoti N (2004) Matrix metalloprotease inhibitors: design from structure. Biochem Soc Trans 32:17–20

    Article  PubMed  CAS  Google Scholar 

  29. Cross JB, Duca JS, Kaminski JJ, Madison VS (2002) The active site of a zinc-dependent metalloproteinase influences the computed pKa of ligands coordinated to the catalytic zinc ion. J Am Chem Soc 124:11004–11007

    Article  PubMed  CAS  Google Scholar 

  30. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  31. Bissett D, O’Byrne KJ, von Pawel J et al (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23:842–849

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Avendaño.

Additional information

Supported by an unrestricted educational grant from Roche Farma S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avendaño, C., Menéndez, J.C. Peptidomimetics in cancer chemotherapy. Clin Transl Oncol 9, 563–570 (2007). https://doi.org/10.1007/s12094-007-0104-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0104-6

Key words

Navigation