Skip to main content
Log in

Proteomic Investigation of Photorhabdus Bacteria for Nematode-Host Specificity

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Majority of animals form symbiotic relationships with bacteria. Based on the number of bacterial species associating with an animal, these symbiotic associations can be mono-specific, relatively simple (2–25 bacterial species/animal) or highly complex (>102–103 bacterial species/animal). Photorhabdus (family-Enterobacteriaceae) forms a mono-specific symbiotic relationship with the entomopathogenic nematode Heterorhabditis. This system provides a tractable genetic model for animal-microbe symbiosis studies. Here, we investigated the bacterial factors that may be responsible for governing host specificity between nematode and their symbiont bacteria using proteomics approach. Total protein profiles of P. luminescens ssp. laumondii (host nematode- H. bacteriophora) and P. luminescens ssp. akhurstii (host nematode- H. indica) were compared using 2-D gel electrophoresis, followed by identification of differentially expressed proteins by MALDI-TOF MS. Thirty-nine unique protein spots were identified - 24 from P. luminescens ssp. laumondii and 15 from P. luminescens ssp. akhurstii. These included proteins that might be involved in determining host specificity directly (for e.g. pilin FimA, outer membrane protein A), indirectly through effect on bacterial secondary metabolism (for e.g. malate dehydrogenase Mdh, Pyruvate formate-lyase PflA, flavo protein WrbA), or in a yet unknown manner (for e.g. hypothetical proteins, transcription regulators). Further functional validation is needed to establish the role of these bacterial proteins in nematode-host specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818. doi:10.1038/nature06245

    Article  CAS  PubMed  Google Scholar 

  2. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. doi:10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  3. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056. doi:10.1073/pnas.1009906107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnol 21:1307–1313. doi:10.1038/nbt886

    Article  CAS  Google Scholar 

  5. Kushwah J, Somvanshi VS (2015) Photorhabdus: a microbial factory of insect-killing toxins. In: Kalia VC (ed) Microbial factories: biodiversity, biopolymers, bioactive molecules, vol 2. Springer India, New Delhi, pp 235–240. doi:10.1007/978-81-322-2595-9_15

    Chapter  Google Scholar 

  6. Inman FL III, Holmes L (2012) Antibacterial screening of secreted compounds produced by the phase I variant of Photorhabdus luminescens. Ind J Microbiol 52:708–709. doi:10.1007/s12088-012-0307-6

    Article  CAS  Google Scholar 

  7. Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook. doi:10.1895/wormbook.1.135.1

    PubMed  PubMed Central  Google Scholar 

  8. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574. doi:10.1146/annurev.micro.091208.073507

    Article  CAS  PubMed  Google Scholar 

  9. Inman FL, Singh S, Holmes LD (2012) Mass production of the beneficial nematode Heterorhabditis bacteriophora and its bacterial symbiont Photorhabdus luminescens. Ind J Microbiol 52:316–324. doi:10.1007/s12088-012-0270-2

    Article  CAS  Google Scholar 

  10. Singh S, Eric M, Floyd I, Leonard HD (2011) Characterization of Photorhabdus luminescens growth for the rearing of the beneficial nematode Heterorhabditis bacteriophora. Ind J Microbiol 52:325–331. doi:10.1007/s12088-011-0238-7

    Article  Google Scholar 

  11. Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, Spieth J, Sternberg PW, Wilson RK, Grewal PS (2013) A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. Plos One 8:e69618. doi:10.1371/journal.pone.0069618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287. doi:10.1128/AEM.02646-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Easom CA, Joyce SA, Clarke DJ (2010) Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol 10:45. doi:10.1186/1471-2180-10-45

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lango L, Clarke DJ (2010) A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens. Mol Microbiol 77:1394–1405. doi:10.1111/j.1365-2958.2010.07300.x

    Article  CAS  PubMed  Google Scholar 

  15. Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA (2010) Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 77:1021–1038. doi:10.1111/j.1365-2958.2010.07270.x

    CAS  PubMed  Google Scholar 

  16. Turlin E, Pascal G, Rousselle JC, Lenormand P, Ngo S, Danchin A, Derzelle S (2006) Proteome analysis of the phenotypic variation process in Photorhabdus luminescens. Proteomics 6:2705–2725. doi:10.1002/pmic.200500646

    Article  CAS  PubMed  Google Scholar 

  17. Yu S, Peng Y, Zheng Y, Chen W (2014) Comparative genome analysis of Lactobacillus casei: insights into genomic diversification for niche expansion. Ind J Microbiol 55:102–107. doi:10.1007/s12088-014-0496-2

    Article  Google Scholar 

  18. Heungens K, Cowles CE, Goodrich-Blair H (2002) Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol 45:1337–1353. doi:10.1046/j.1365-2958.2002.03100.x

    Article  CAS  PubMed  Google Scholar 

  19. Gaudriault S, Duchaud E, Lanois A, Canoy AS, Bourot S, Derose R, Kunst F, Boemare N, Givaudan A (2006) Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. J Bacteriol 188:809–814. doi:10.1128/JB.188.2.809-814.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Ann Rev Biochem 80:273–299. doi:10.1146/annurev-biochem-061308-093216

    Article  CAS  PubMed  Google Scholar 

  21. Chen S, Glazer I, Gollop N, Cash P, Argo E, Innes A, Stewart E, Davidson I, Wilson MJ (2006) Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. Mol Biochem Parasitol 145:195–204. doi:10.1016/j.molbiopara.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Nat Acad Sci USA 106:1760–1765. doi:10.1073/pnas.0813167106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guan Y, Zhu Q, Huang D, Zhao S, Jan Lo L, Peng J (2015) An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Nat Sci Rep 5:13370. doi:10.1038/srep13370

    Article  CAS  Google Scholar 

  24. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Nat Acad Sci USA 100:3584–3588. doi:10.1073/pnas.0630018100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337:88–93. doi:10.1126/science.1216641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davies RL, Lee I (2004) Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (ompA) of Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. J Bacteriol 186:5741–5752. doi:10.1128/JB.186.17.5741-5752.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novak R, Cauwels A, Charpentier E, Tuomanen E (1999) Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. J Bacteriol 181:1126–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210. doi:10.1093/nar/25.6.1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patridge EV, Ferry JG (2006) WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD (P) H: quinone oxidoreductase. J Bacteriol 188:3498–3506. doi:10.1128/JB.188.10.3498-3506.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grunden AM, Ray RM, Rosentel JK, Healy FG, Shanmugam KT (1996) Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE. J Bacteriol 178:735–744

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Vinay Kalia, Principal Scientist, Division of Entomology, ICAR-IARI for providing facilities for 2-D gel electrophoresis. This work was supported by Grant no. C4-3005 (Indian Council of Agricultural Research (ICAR)-National Agricultural Innovation Project); Grant no. SB/SO/AS/010/2014 (Science and Engineering Research Board, Department of Science and Technology, Government of India), and in-house funding from the Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal S. Somvanshi.

Ethics declarations

Conflict of interest

Authors declare no potential conflict of interest.

Human and Animal Rights

No animal and human rights were violated during this study.

Additional information

Ram Kumar and Jyoti Kushwah: equal contribution first authorship.

Sudershan Ganguly: posthumously.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kushwah, J., Ganguly, S. et al. Proteomic Investigation of Photorhabdus Bacteria for Nematode-Host Specificity. Indian J Microbiol 56, 361–367 (2016). https://doi.org/10.1007/s12088-016-0594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0594-4

Keywords

Navigation