Skip to main content
Log in

An In Silico Approach for Identification of the Pathogenic Species, Helicobacter pylori and Its Relatives

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Helicobacter is an economically important genus within the phylum Proteobacteria and include many species which cause many diseases in humans. With the conventional methods, it is difficult to identify them easily due to the high genetic similarity among its species. In the present study, 361 16S rRNA (rrs) gene sequences belonging to 45 species of genus Helicobacter were analyzed. Out of these, 264 sequences of 10 clinically relevant species (including Helicobacter pylori) were used. rrs gene sequences were analyzed to obtain a phylogenetic framework tree, in silico restriction enzyme analysis and species-specific conserved motifs. Protein sequences of another housekeeping gene, hsp60 were also subjected to phylogenetic analysis to supplement the data obtained using rrs sequences. Using these approaches, six out of ten species (including H. pylori) were easily segregated, whereas four species namely H. bilis, H. cinaedi, H. felis and Candidatus H. heilmannii were found to be heterogeneous. The above approaches have also helped in segregating unclassified sequences, thus proving them as an easy diagnostic method for identifying members of genus Helicobacter up to species level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862. doi:10.1128/CMR.17.4.840-862.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pulses, perils and pitfalls. J Clin Microbiol 45:2761–2764. doi:10.1128/JCM.01228-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed  PubMed Central  Google Scholar 

  5. Owen RJ (1998) Helicobacter—species classification and identification. Br Med Bull 54:17–30. doi:10.1093/oxfordjournals.bmb.a011667

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD et al (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. respectively. Int J Syst Bacteriol 39:397–405. doi:10.1099/00207713-39-4-397

    Article  Google Scholar 

  7. Solnick JV, O’Rourke J, Lee A, Paster BJ, Dewhirst FE et al (1993) An uncultured gastric spiral organism is a newly identified Helicobacter in humans. J Infect Dis 168:379–385. doi:10.1093/infdis/168.2.379

    Article  CAS  PubMed  Google Scholar 

  8. Parsonnet J (1998) Helicobacter pylori: the size of the problem. Gut 43:S6–S9. doi:10.1136/gut.43.2008.S6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suerbaum S, Michetti P (2012) Helicobacter pylori infection. N Engl J Med 347:175–186

    Google Scholar 

  10. Schilling D, Demel A, Adamek HE, Nüsse T, Weidmann E et al (2003) A negative rapid urease test is unreliable for exclusion of Helicobacter pylori infection during acute phase of ulcer bleeding—a prospective case control study. Dig Liver Dis 35:217–221. doi:10.1016/S1590-8658(03)00058-6

    Article  CAS  PubMed  Google Scholar 

  11. Laine LA, Nathwani RA, Naritoku W (2005) The effect of GI bleeding on Helicobacter pylori diagnostic testing: a prospective study at the time of bleeding and 1 month later. Gastro Intest Endosc 62:853–859. doi:10.1016/j.gie.2005.09.019

    Article  Google Scholar 

  12. Morris A, Ali MR, Thomsen L, Hollis B (1990) Tightly spiral shaped bacteria in the human stomach: another cause of active chronic gastritis? Gut 31:139–143. doi:10.1136/gut.31.2.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chong SKF, Lou Q, Fitzgerald JF, Lee CH (1996) Evaluation of 16S rRNA gene PCR with primers Hp1 and Hp2 for detection of Helicobacter pylori. J Clin Microbiol 34:2728–2730

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sugimoto M, Wu JY, Abudayyeh S, Hoffman J, Brahem H (2009) Unreliability of results of PCR detection of Helicobacter pylori in clinical or environmental samples. J Clin Microbiol 47:738–742. doi:10.1128/JCM.01563-08

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lal D, Verma M, Lal R (2011) Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob 10:28. doi:10.1186/1476-0711-10-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalia VC, Kumar P (2015) Genome wide search for biomarkers to diagnose Yersinia infections. Indian J Microbiol 55:366–374. doi:10.1007/s12088-015-0552-6

    Article  CAS  PubMed  Google Scholar 

  17. Kalia VC, Kumar P, Kumar R, Mishra A, Koul S (2015) Genome wide analysis for rapid identification of Vibrio species. Indian J Microbiol 55:375–383. doi:10.1007/s12088-015-0553-5

    Article  PubMed  Google Scholar 

  18. Kalia VC, Kumar R, Kumar P, Koul S (2015) A genome-wide profiling strategy as an aid for searching unique identification biomarkers for Streptococcus. Indian J Microbiol 56:46–58. doi:10.1007/s12088-015-0561-5

    Article  PubMed  Google Scholar 

  19. Kekre A, Bhushan A, Kumar P, Kalia VC (2015) Genome wide analysis for searching novel markers to rapidly identify Clostridium strains. Indian J Microbiol 55:250–257. doi:10.1007/s12088-015-0535-7

    Article  CAS  PubMed  Google Scholar 

  20. Kumar R, Koul S, Kumar P, Kalia VC (2016) Searching biomarkers in the sequenced genomes of Staphylococcus for their rapid identification. Indian J Microbiol 56:64–71. doi:10.1007/s12088-016-0565-9

    Article  CAS  PubMed  Google Scholar 

  21. Koul S, Kumar P, Kalia VC (2015) A unique genome wide approach to search novel markers for rapid identification of bacterial pathogens. J Mol Genet Med 9:194. doi:10.4172/1747-0862.1000194

    Article  Google Scholar 

  22. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263. doi:10.1007/s12088-013-0412-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC (2015) Insights into the origin of Clostridium botulinum strains: evolution of distinct restriction endonuclease sites in rrs (16S rRNA gene). Indian J Microbiol 55:140–150. doi:10.1007/s12088-015-0514-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom 12:18. doi:10.1186/1471-2164-12-18

    Article  CAS  Google Scholar 

  25. Kalia VC (2015) Let’s explore the latent features of genes to identify bacteria. J Mol Genet Med 9:e105. doi:10.4172/1747-0862.1000E105

    Google Scholar 

  26. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM et al (2000) The RDP (ribosomal database project) continues. Nucl Acids Res 28:173–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  28. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  29. Felsenstein J (1993) Phylip (Phylogeny Inference Package) version 3.57c. Department of Genetics, University of Washington, Seattle. http://evolution.genetics.washington.edu/phylip.html

  30. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  32. O’Rourke JL, Solnick JV, Neilan BA, Seidel K, Hayter R et al (2004) Description of Candidatus Helicobacter heilmannii infections based on DNA sequence analysis of 16S rRNA and urease genes. Int J Syst Evol Microbiol 54:2203–2211. doi:10.1099/ijs.0.63117-0

    Article  PubMed  Google Scholar 

  33. Vandamme P, Harrington CS, Jalava K, On SLW (2000) Misidentifying Helicobacters: the Helicobacter cinaedi example. J Clin Microbiol 38:2261–2266

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fox JG, Chien CC, Dewhirst FE, Paster BJ, Shen Z et al (2000) Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J Clin Microbiol 38:2546–2549

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Segal G, Ron EZ (1996) Regulation and organization of the GroE and dnaK operons in eubacteria. FEMS Microbiol Lett 138:1–10. doi:10.1111/j.1574-6968.1996.tb08126.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.P., A.R. acknowledge Delhi University Innovative Scheme for providing the fellowship and opportunity for undertaking this project.

Authors’ Information

This work is performed by the undergraduate students at Sri Venkateswara College, University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansi Verma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1003 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, A., Rai, A., Dhanaraj, P.S. et al. An In Silico Approach for Identification of the Pathogenic Species, Helicobacter pylori and Its Relatives. Indian J Microbiol 56, 277–286 (2016). https://doi.org/10.1007/s12088-016-0575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0575-7

Keywords

Navigation