Skip to main content
Log in

Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wion D, Casadesús J (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol 4:183–192. doi:10.1038/nrmicro1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar R, Rao DN (2013) Role of DNA methyltransferases in epigenetic regulation in bacteria. Epigenetics: development and disease. Subcell Biochem 61:81–102. doi:10.1007/978-94-007-4525-4_4

    Article  CAS  PubMed  Google Scholar 

  3. Casadesús J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856. doi:10.1128/MMBR.00016-06

    Article  PubMed  PubMed Central  Google Scholar 

  4. Low DA, Weyand NJ, Mahan MJ (2001) Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun 69:7197–7204. doi:10.1128/IAI.69.12.7197-7204.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa K, Fukuda E, Kobayashi I (2010) Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 17:325–342. doi:10.1093/dnares/dsq027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seshasayee AS, Singh P, Krishna S (2012) Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res 40:7066–7073. doi:10.1093/nar/gks390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH, Maiden MC, Grimmond SM, Apicella MA, Jennings MP (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 5:e1000400. doi:10.1371/journal.ppat.1000400

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24. doi:10.1186/s13072-015-0016-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kekre A, Bhushan A, Kumar P, Kalia VC (2015) Genome wide analysis for searching novel markers to rapidly identify clostridium strains. Indian J Microbiol 55:250–257. doi:10.1007/s12088-015-0535-7

    Article  CAS  PubMed  Google Scholar 

  11. Kalia VC, Kumar P (2015) Genome wide search for biomarkers to diagnose Yersinia infections. Indian J Microbiol 55:366–374. doi:10.1007/s12088-015-0552-6

    Article  CAS  PubMed  Google Scholar 

  12. Kalia VC, Kumar R, Kumar P, Koul S (2015) A gemone-wide profiling strategy as an aid for searching unique identification biomarkers for Streptococcus. Indian J Microbiol. doi:10.1007/s12088-015-0561-5

    Google Scholar 

  13. Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC (2015) Insights into the origin of Clostridium botulinum strains: evolution of distinct restriction endonuclease sites in rrs (16S rRNA gene). Indian J Microbiol 55:140–150. doi:10.1007/s12088-015-0514-z

    Article  PubMed  Google Scholar 

  14. Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299. doi:10.1093/nar/gku1046

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lin LF, Posfai J, Roberts RJ, Kong H (2001) Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc Natl Acad Sci USA 98:2740–2745. doi:10.1073/pnas.051612298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shell SS, Prestwich EG, Baek SH, Shah RR, Sassetti CM, Dedon PC, Fortune SM (2013) DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLoS Pathog 9:e1003419. doi:10.1371/journal.ppat.1003419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L (2013) Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 9:e1003191. doi:10.1371/journal.pgen.1003191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagar EA, Safarians S, Pang M (1992) Analysis of genomic DNA from Chlamydia trachomatis for Dam and Dcm methylation. FEMS Microbiol Lett 77:161–168

    Article  CAS  PubMed  Google Scholar 

  19. Hemavathy KC, Nagaraja V (1995) DNA methylation in mycobacteria: absence of methylation at GATC (Dam) and CCA/TGG (Dcm) sequences. FEMS Immunol Med Microbiol 11:291–296. doi:10.1111/j.1574-695X.1995.tb00159.x

    Article  CAS  PubMed  Google Scholar 

  20. Sitaraman R (2014) Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization. Front Microbiol 5:115. doi:10.3389/fmicb.2014.00115

    Article  PubMed  PubMed Central  Google Scholar 

  21. Srikhanta YN, Gorrell RJ, Steen JA, Gawthorne JA, Kwok T, Grimmond SM, Robins-Browne RM, Jennings MP (2011) Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS One 6:e27569. doi:10.1371/journal.pone.0027569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar R, Mukhopadhyay AK, Ghosh P, Rao DN (2012) Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS One 7:e42303. doi:10.1371/journal.pone.0042303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel L, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S (2014) The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 42:2415–2432. doi:10.1093/nar/gkt1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan J, Zhang M, Zhang J, Chen X, Zhang X (2011) Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun 408:99–102. doi:10.1016/j.bbrc.2011.03.127

    Article  CAS  PubMed  Google Scholar 

  25. Cao XY, Ma HX, Shang YH, Jin MS, Kong F, Jia ZF, Cao DH, Wang YP, Suo J, Jiang J (2014) DNA methyltransferase3a expression is an independent poor prognostic indicator in gastric cancer. World J Gastroenterol 20:8201–8208. doi:10.3748/wjg.v20.i25.8201

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP (2007) Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res 35:5242–5252. doi:10.1093/nar/gkm571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gómez-Eichelmann MC (1979) Deoxyribonucleic acid adenine and cytosine methylation in Salmonella typhimurium and Salmonella typhi. J Bacteriol 140:574–579

    PubMed  PubMed Central  Google Scholar 

  28. Robinson VL, Oyston PC, Titball RW (2005) A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 252:251–256. doi:10.1016/j.femsle.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  29. Dreiseikelmann B, Wackernagel W (1981) Absence in Bacillus subtilis and Staphylococcus aureus of the sequence-specific deoxyribonucleic acid methylation that is conferred in Escherichia coli K-12 by the dam and dcm enzymes. J Bacteriol 147:259–261

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarnacki SH, Castañeda MDELR, Noto Llana M, Giacomodonato MN, Valvano MÁ, Cerquetti MC (2013) Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis. PLoS One 8:e56474. doi:10.1371/journal.pone.0056474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srikhanta YN, Fox KL, Jennings MP (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 8:196–206. doi:10.1038/nrmicro2283

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank to DGAPA/UNAM for the postdoctoral scholarship granted to AJL Brambila-Tapia. Support from DGAPA-UNAM PAPIIT IN 107214 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aniel Jessica Leticia Brambila-Tapia or Katya Rodríguez-Vázquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table

Organisms with a MamA homolog (XLSX 46 kb)

Supplementary Figure

Consensus sequences of each KO analyzed. Footnote: The asterisks represent the catalytic amino acids (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brambila-Tapia, A.J.L., Poot-Hernández, A.C., Perez-Rueda, E. et al. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics. Indian J Microbiol 56, 134–141 (2016). https://doi.org/10.1007/s12088-015-0562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0562-4

Keywords

Navigation