Skip to main content
Log in

Factors Affecting Inducible Expression of Outer Membrane Protein A (OmpA) of Shigella dysenteriae Type-1 in Lactococcus lactis Using Nisin Inducible Controlled Expression (NICE)

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cortes-Perez NG, Poquet I, Oliveira M, Gratadoux JJ, Madsen SM, Miyoshi A, Corthier G, Azevedo V, Langella P, Bermúdez-Humarán LG (2006) Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases. Microbiology 152:2611–2618. doi:10.1099/mic.0.28698-0

    Article  CAS  PubMed  Google Scholar 

  2. Kuipers OP, De Ruyter PGGA, Kleerebezem M, De Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21. doi:10.1016/S0168-1656(98)00100-X

    Article  CAS  Google Scholar 

  3. Villatoro-Hernandez J, Loera-Arias MJ, Gamez-Escobedo A, Franco-Molina M, Gomez-Gutierrez J, Rodriguez-Rocha H, Gutierrez-Puente Y, Saucedo-Cardenas O, Valdes-Flores J, Montes-de-Oca-Luna R (2008) Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microb Cell Fact 7:22. doi:10.1186/1475-2859-7-22

    Article  PubMed Central  PubMed  Google Scholar 

  4. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 13:1–13. doi:10.1186/1475-2859-4-2

    Google Scholar 

  5. Frelet-barrand A, Boutigny S, Kunji ERS, Rolland N (2010) Heterologous expression of membrane proteins. Methods Mol Biol 601:67–85. doi:10.1007/978-1-60761-344-2

    Article  CAS  PubMed  Google Scholar 

  6. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  7. Ribeiro LA, Azevedo V, Le LY, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and Targeting of the Brucella abortus Antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916. doi:10.1128/AEM.68.2.910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zellner M, Winkler W, Hayden H, Diestinger M, Eliasen M, Gesslbauer B, Miller I, Chang M, Kungl A, Roth E, Oehler R (2005) Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 26:2481–2489. doi:10.1002/elps.200410262

    Article  CAS  PubMed  Google Scholar 

  9. Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61:151–158. doi:10.1016/j.plasmid.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  10. Rigoulay C, Poquet I, Madsen SM, Gruss A (2004) Expression of the Staphylococcus aureus surface proteins HtrA1 and HtrA2 in Lactococcus lactis. FEMS Microbiol Lett 237:279–288. doi:10.1016/j.femsle.2004.06.046

    CAS  PubMed  Google Scholar 

  11. Oddone GM, Mills DA, Block DE (2009) Dual inducible expression of recombinant GFP and targeted antisense RNA in Lactococcus lactis. Plasmid 62:108–118. doi:10.1016/j.plasmid.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435. doi:10.1016/j.biotechadv.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  13. Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320. doi:10.1016/j.chroma.2003.10.029

    Article  CAS  PubMed  Google Scholar 

  14. Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579. doi:10.1002/elps.201000197

    Article  CAS  PubMed  Google Scholar 

  15. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589. doi:10.1038/nature04395

    Article  CAS  PubMed  Google Scholar 

  16. Gentile F, Amodeo P, Febbraio F et al (2002) SDS-resistant active and thermostable dimers are obtained from the dissociation of homotetrameric β-glycosidase from hyperthermophilic Sulfolobus solfataricus in SDS: stabilizing role of the A–C intermonomeric interface. J Biol Chem 277:44050–44060. doi:10.1074/jbc.M206761200

    Article  CAS  PubMed  Google Scholar 

  17. Zhou XX, Li WF, Ma GX, Pan YJ (2006) The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv 24:285–295. doi:10.1016/j.biotechadv.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Drouault S, Corthier G, Ehrlich SD (2000) Expression of the Staphylococcus hyicus Lipase in Lactococcus lactis. Appl Environ Microbiol 66:588–598. doi:10.1128/AEM.66.2.588-598.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Marreddy RKR, Pinto JPC, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2011) The response of Lactococcus lactis to membrane protein production. PLoS ONE 6:1–15. doi:10.1371/journal.pone.0024060

    Article  Google Scholar 

  20. Enouf V, Langella P, Commissaire J, Cohen J (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428. doi:10.1128/AEM.67.4.1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr, B: Anal Technol Biomed Life Sci 849:1–31. doi:10.1016/j.jchromb.2006.10.040

    Article  CAS  Google Scholar 

  22. Langella P, Miyoshi A, Gruss A, Guerra RT, Oca-luna RMDe, Le LY (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68–2:917–922. doi:10.1128/AEM.68.2.917

    Google Scholar 

  23. Frees D, Ingmer H (1999) ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol 31:79–87

    Article  CAS  PubMed  Google Scholar 

  24. Gasson MJ (1983) Genetic transfer systems in lactic acid bacteria. Antonie Van Leeuwenhoek 49:275–282. doi:10.1007/BF00399500

    Article  CAS  PubMed  Google Scholar 

  25. Foucaud-Scheunemann C, Poquet I (2003) HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224:53–59. doi:10.1016/S0378-1097(03)00419-1

    Article  CAS  PubMed  Google Scholar 

  26. Bermdez-Humarán LG, Langella P, Commissaire J, Gilbert S, Loir Y, L’Haridon R, Corthier G (2003) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224:307–313. doi:10.1016/S0378-1097(03)00475-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Grant of Indian Council of Medical Research (ICMR) and B.V. Patel PERD Centre. Bhrugu Yagnik is recipient of Lady Tata Memorial Trust’s Fellowship. We gratefully acknowledge Dr. Luis Bermudez-Humaran, INRA, France for providing the backbone vector pSEC:Nuc and L. lactis NZ9000 and Dr. Isabelle Poquet, INRA, France for providing the L. lactis VEL1153 (NZ9000 ΔhtrA). We also express our gratitude to Mr. Jignesh Parmar, NIPER-Ahmedabad, India for contributing in pSEC:OmpA construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Desai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with respect to authorship, funding and publication of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagnik, B., Patel, S., Dave, M. et al. Factors Affecting Inducible Expression of Outer Membrane Protein A (OmpA) of Shigella dysenteriae Type-1 in Lactococcus lactis Using Nisin Inducible Controlled Expression (NICE). Indian J Microbiol 56, 80–87 (2016). https://doi.org/10.1007/s12088-015-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0556-2

Keywords

Navigation