Skip to main content
Log in

Diversity of the Intestinal Bacteria of Cattle Fed on Diets with Different Doses of Gelatinized Starch-Urea

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gelatinized starch-urea (Starea, SU) is an effective and economical source of urea for ruminants. Here we assessed the influence of dietary supplementation with gelatinized starch-urea on the diversity of intestinal bacteria in finishing cattle. Fifty steers were randomly allotted to five treatments with diets supplemented with different doses of Starea [0 % (SU0), 8 % (SU8), 16 % (SU16), 24 % (SU24), and 32 % (SU32) of urea-N in total nitrogen]. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes was used to examine the effect of dietary supplementation of Starea on intestinal bacterial flora. Shannon–Weaver and Simpson diversity indices consistently showed the lowest bacterial diversity in the SU0 treatment. Increasing doses of Starea increased the diversity up to SU24 after which, diversity decreased. Cluster analysis of 16S rRNA gene DGGE profiles indicates that the intestinal bacterial communities associated with cattle that were not supplemented with Starea in feed differed in composition and structure from those supplemented with Starea. The amount of Starea supplemented in cattle diets influenced the abundance of several key species affiliated with Lachnospiraceae, Ruminococcaceae, Peptostreptococcaceae, Comamonadaceae and Moraxellaceae. These results suggest that Starea influences the composition and structure of intestinal bacteria which may play a role in promoting ruminant health and production performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125. doi:10.1186/1471-2180-8-125

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21:357–365. doi:10.1177/0148607197021006357

    Article  CAS  PubMed  Google Scholar 

  3. Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292:1115–1118. doi:10.1126/science.1058709

    Article  CAS  PubMed  Google Scholar 

  4. Mapato C, Wanapat M, Cherdthong A (2010) Effects of urea treatment of straw and dietary level of vegetable oil on lactating dairy cows. Trop Anim Health Prod 42:1635–1642. doi:10.1007/s11250-010-9613-3

    Article  PubMed  Google Scholar 

  5. Taylor-Edwards CC, Hibbard G, Kitts SE, McLeod KR, Axe DE, Vanzant ES, Kristensen NB, Harmon DL (2009) Effects of slow-release urea on ruminal digesta characteristics and growth performance in beef steers. J Anim Sci 87:200–208. doi:10.2527/jas.2008-0912

    Article  CAS  PubMed  Google Scholar 

  6. Velloso L, Perry TW, Peterson RC, Beeson WM (1971) Effect of dehydrated alfalfa meal and of fish solubles on growth and nitrogen and energy balance of lambs and beef cattle fed a high urea liquid supplement. J Anim Sci 32:764–768. doi:10.2134/jas1971.324764x

    CAS  PubMed  Google Scholar 

  7. Helmer LG, Bartley EE, Deyoe CW (1970) Feed processing. VI. Comparison of starea, urea, and soybean meal as protein sources for lactating dairy cows. J Dairy Sci 53:883–887. doi:10.3168/jds.S0022-0302(70)86312-3

    Article  Google Scholar 

  8. Morrill JL, Dayton AD (1974) Soybean meal versus starea at two concentrations for young calves. J Dairy Sci 57:427–429. doi:10.3168/jds.S0022-0302(74)84908-8

    Article  Google Scholar 

  9. Ma W, Ren L, Wang L, Ding J, Zhao J, Meng Q (2011) Effect of supplemental levels of gelatinized starch-urea on growth performance and plasma biochemical indices of growing-finishing beef cattle. Chin J Anim Nutr 23:1710–1715. doi:10.3969/j.issn.1006-267x.2011.10.010

    CAS  Google Scholar 

  10. Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson AK, Wells JE (2014) Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci 92:683–694. doi:10.2527/jas.2013-6841

    Article  CAS  PubMed  Google Scholar 

  11. Castillo-Lopez E, Ramirez Ramirez HA, Klopfenstein TJ, Anderson CL, Aluthge ND, Fernando SC, Jenkins T, Kononoff PJ (2014) Effect of feeding dried distillers grains with solubles on ruminal biohydrogenation, intestinal fatty acid profile, and gut microbial diversity evaluated through DNA pyro-sequencing. J Anim Sci 92:733–743. doi:10.2527/jas.2013-7223

    Article  CAS  PubMed  Google Scholar 

  12. Paddock ZD, Walker CE, Drouillard JS, Nagaraja TG (2011) Dietary monensin level, supplemental urea, and ractopamine on fecal shedding of Escherichia coli O157:H7 in feedlot cattle. J Anim Sci 89:2829–2835. doi:10.2527/jas.2010-3793

    Article  CAS  PubMed  Google Scholar 

  13. Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110. doi:10.1016/j.micres.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  14. Zhu W-Y, Williams BA, Konstantinov SR, Tamminga S, De Vos WM, Akkermans ADL (2003) Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9:175–180. doi:10.1016/s1075-9964(03)00083-0

    Article  CAS  PubMed  Google Scholar 

  15. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2014) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  Google Scholar 

  17. Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium. BMC Genomics 12:18. doi:10.1186/1471-2164-12-18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lal D, Verma M, Lal R (2011) Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob 10:28. doi:10.1186/1476-0711-10-28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Nubel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Watanabe T, Asakawa S, Nakamura A, Nagaoka K, Kimura M (2004) DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiol Lett 232:153–163. doi:10.1016/S0378-1097(04)00045-X

    Article  CAS  PubMed  Google Scholar 

  22. Wang JQ, Yin FG, Zhu C, Yu H, Niven SJ, de Lange CFM, Gong J (2012) Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livestock Sci 145:79–86. doi:10.1016/j.livsci.2011.12.024

    Article  Google Scholar 

  23. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LH, Ravelonandro P, Mavingui P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75:377–389. doi:10.1111/j.1574-6941.2010.01012.x

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Li S, Sun L, Wu H, Hu Z, Liu W, Li Y, Wen X (2012) The intestinal microbial diversity in mud crab (Scylla paramamosain) as determined by PCR-DGGE and clone library analysis. J Appl Microbiol 113:1341–1351. doi:10.1111/jam.12008

    Article  CAS  PubMed  Google Scholar 

  28. Haverson K, Rehakova Z, Sinkora J, Sver L, Bailey M (2007) Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs. Vet Immunol Immunopathol 119:243–253. doi:10.1016/j.vetimm.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  29. Rudi K, Moen B, Sekelja M, Frisli T, Lee MR (2012) An eight-year investigation of bovine livestock fecal microbiota. Vet Microbiol 160:369–377. doi:10.1016/j.vetmic.2012.06.003

    Article  PubMed  Google Scholar 

  30. Murphy P, Bello FD, O’Doherty JV, Arendt EK, Sweeney T, Coffey A (2012) Effects of cereal beta-glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe 18:557–565. doi:10.1016/j.anaerobe.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  31. Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, Newbold CJ (2013) Identification of a core bacterial community within the large intestine of the horse. PLoS ONE 8:e77660. doi:10.1371/journal.pone.0077660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Scott KP, Martin JC, Duncan SH, Flint HJ (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87:30–40. doi:10.1111/1574-6941.12186

    Article  CAS  PubMed  Google Scholar 

  33. Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ (2010) Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 44:4674–4691. doi:10.1016/j.watres.2010.06.049

    Article  CAS  PubMed  Google Scholar 

  34. Costa MC, Reid-Smith R, Gow S, Hannon SJ, Booker C, Rousseau J, Benedict KM, Morley PS, Weese JS (2012) Prevalence and molecular characterization of Clostridium difficile isolated from feedlot beef cattle upon arrival and mid-feeding period. BMC Vet Res 8:38. doi:10.1186/1746-6148-8-38

    Article  PubMed Central  PubMed  Google Scholar 

  35. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2001) Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67:1107–1115. doi:10.1128/AEM.67.3.1107-1115.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hamouda A, Findlay J, Al Hassan L, Amyes SG (2011) Epidemiology of Acinetobacter baumannii of animal origin. Int J Antimicrob Agents 38:314–318. doi:10.1016/j.ijantimicag.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  37. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain pseudomonas up to species level. Indian J Microbiol 53:253–263. doi:10.1007/s12088-013-0412-1

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the National Natural Science Foundation of China (No. 31172231) and the Earmarked Fund for Modern Agro-Industry Technology Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Meng, Q., Ma, W. et al. Diversity of the Intestinal Bacteria of Cattle Fed on Diets with Different Doses of Gelatinized Starch-Urea. Indian J Microbiol 55, 269–277 (2015). https://doi.org/10.1007/s12088-015-0526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0526-8

Keywords

Navigation