Skip to main content
Log in

Approaches to a comparison of fin and limb structure and development

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Carl Gegenbaur (1865) proposed a specific arrangement of endoskeletal elements as the key feature of a common plan of vertebrate paired appendages which he called the metapterygium. He based the recognition of a metapterygium in different species on endoskeletal pattern but not on its position within the fin/limb. Here I suggest to use the position of Gegenbaur’s metapterygium defined by position of its precursor cells in the fin bud to evaluate homology of metapterygia. The results of developmental studies do not yet bridge the gap between patterning mechanisms and endoskeletal patterns in fins and limbs. Of all genes involved in fin and limb development, the function of Hoxa and Hoxa genes is most closely linked to endoskeleton formation. However, their downstream targets are unknown and it is thus not clear how differences in their expression patterns relate to different skeletal patterns in different species. A comparison of gene function has become possible, however, by the analysis of zebrafish and mouse mutants affecting orthologous genes. Shh and the transcription factor dHand are required for anterior-posterior patterning of fins and limbs. Comparative analysis shows that the initial polarization of the buds involves the action of dHand in both species. Subsequently Shh acts on maintenance and initiation of gene expression along the anterior-posterior axis. Shh maintains developmental progress by interacting with Fgf signalling molecules originating from the ectoderm. However, in spite of general similarities differences exist at the level of Fgf regulation by Shh. In the zebrafish, Shh acts to induce Fgf4 and Fgf8 expression while in the mouse Shh maintains expression of three Fgf genes and Fgf8 expression has escaped Shh regulation. Because Fgfs are important regulators of cell type identity, this difference in Fgf regulation may account for the different proximal-distal extent to which fin and limb buds develop in Shh mutant larvae and pups, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEMF:

apical ectodermal maintenance factor

AER:

apical ectodermal ridge

ZPA:

zone of polarizing activity

Shh/Fgf:

Sonic hedgehog/Fibroblast growth factor gene

Shh/Fgf:

Sonic hedgehog/Fibroblast growth factor protein

Ptc-1/-2:

patched-1/-2 are target genes of Shh

References

  • Balfour, M. (1881) On the development of the skeleton of the paired fins of elasmobranchii, considered in relation to its bearings on the nature of the limbs of vertebrata. Proc Zool Soc London 43: 656–671.

    Google Scholar 

  • Bouvet, J. (1970) Établissement de la carte des territoires présomptifs du bourgeon de la nageoire pectorale chez la truite indigène (Salmo trutta fario) a l’ aide d’excisions et de marques colorées. Annales d’ Embryologie et de Morphogenèse 3: 315–328.

    Google Scholar 

  • Charite, J., McFadden, D. G. and Olson, E. N. (2000). The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 127: 2461–2470.

    PubMed  CAS  Google Scholar 

  • Chiang, C., Litingtung, Y., Harris, M. P., Simandl, B. K., Li, Y., Beachy, P. A. and Fallon, J. F. (2001) Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev Biol 236: 421–435.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H. and Beachy, P. A. (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Coates, M. I. (1994) The origin of vertebrate limbs. Dev Suppl, 169–180.

  • Coates, M. I. (1995) Limb evolution. Fish fins or tetrapod limbs — a simple twist of fate? Curr Biol 5: 844–848.

    Article  PubMed  CAS  Google Scholar 

  • Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. and Capecchi, M. R. (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375: 791–795.

    Article  PubMed  CAS  Google Scholar 

  • Duboule, D. (1994) How to make a limb? Science 266: 575–576.

    Article  PubMed  CAS  Google Scholar 

  • Duboule, D. (1995) Vertebrate Hox genes and proliferation: an alternative pathway to homeosis? Curr Opin Genet Dev 5: 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Teran, M., Piedra, M. E., Kathiriya, I. S., Srivastava, D., Rodriguez-Rey, J. C. and Ros, M. A. (2000) Role of dHAND in the anterior-posterior polarization of the limb bud: implications for the Sonic hedgehog pathway. Development 127: 2133–2142.

    PubMed  CAS  Google Scholar 

  • Fromental-Ramain, C., Warot, X., Messadecq, N., LeMeur, M., Dolle, P. and Chambon, P. (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122: 2997–3011.

    PubMed  CAS  Google Scholar 

  • Gegenbaur, C. (1865) Untersuchungen zur vergleichenden Anatomie der Wirbeltiere. Vol. II. Leipzig: Wilhelm Engelmann.

    Google Scholar 

  • Gegenbaur, C. (1870) Über das Skelett der Gliedmassen der Wirbeltiere im Allgemeinen und der Hintergliedmassen der Selachier insbesondere. Jena Z. Naturw. 5: 397–447.

    Google Scholar 

  • Gegenbaur, C. (1872) Über das Archipterygium. Jena Z. Naturw. 7: 131–141.

    Google Scholar 

  • Gegenbaur, C. (1876) Zur Morphologie der Gliedmassen der Wirbeltiere. Morph. Jarhb. 2: 396–420.

    Google Scholar 

  • Goodrich, E. (1930) Studies on the structure and development of vertebrates. Chicago, IL.: The Uiversity of Chicago Press.

    Google Scholar 

  • Grandel, H., Draper, B. W. and Schulte-Merker, S. (2000) dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development 127: 4169–4178.

    PubMed  CAS  Google Scholar 

  • Grandel, H. and Schulte-Merker, S. (1998) The development of the paired fins in the zebrafish (Danio rerio). Mech Dev 79: 99–120.

    Article  PubMed  CAS  Google Scholar 

  • Heronimus, C. (1911) Die Entwicklung des Brustflossenskelettes bei Amia calva. Anatomischer Anzeiger 34: 193–203.

    Google Scholar 

  • Jessen, H. (1972) Schultergürtel und Pectoralflosse bei Actinopterygiern. Oslo: Universitetsforlaget Oslo.

    Google Scholar 

  • Kraus, P., Fraidenraich, D. and Loomis, C. A. (2001) Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev 100: 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Krauss, S., Concordet, J. P. and Ingham, P. W. (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75: 1431–1444.

    Article  PubMed  CAS  Google Scholar 

  • Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. and Tabin, C. (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79: 993–1003.

    Article  PubMed  CAS  Google Scholar 

  • Litingtung, Y., Dahn, R.D., Li Y., Fallon, J.F., Chiang, C. (2002) Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418: 979–983.

    Article  PubMed  CAS  Google Scholar 

  • Mabee, P. (2000) Developmental data and phylogenetic systematics: evolution of the vertebrate limb. American Zoologist 40: 789–800.

    Article  Google Scholar 

  • Martin, G. R. (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12: 1571–1586.

    PubMed  CAS  Google Scholar 

  • Martin, G. (2001) Making a vertebrate limb: new players enter from the wings. Bioessays 23: 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, B. A., Izpisua-Belmonte, J. C., Duboule, D. and Tabin, C. J. (1992) Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358: 236–239.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, C. J., Grandel, H., Gaffield, W., Schulte-Merker, S. and Nüsslein-Volhard, C. (1999) Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126: 4817–4826.

    PubMed  CAS  Google Scholar 

  • Niswander, L., Jeffrey, S., Martin, G. R. and Tickle, C. (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371: 609–612.

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M. et al. (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124: 2235–2244.

    PubMed  CAS  Google Scholar 

  • Pearse, R. V., 2nd and Tabin, C. J. (1998) The molecular ZPA. J Exp Zool 282: 677–690.

    Article  PubMed  CAS  Google Scholar 

  • Reifers, F., Böhli, H., Walsh, E. C., Crossley, P. H., Stainier, D. Y. R. and Brand, M. (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125: 2381–2395.

    PubMed  CAS  Google Scholar 

  • Riddle, R. D., Johnson, R. L., Laufer, E. and Tabin, C. (1993) Sonic hedgehog mediates the polarizzing activity of the ZPA. Cell 75: 1401–1416.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, J. W. (1948) the proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108: 363–403.

    Article  Google Scholar 

  • Saunders, J. W. and Gasseling, M. T. (1968) Ectodermal-mesenchymal interactions in the origin of limb symmetry. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Sewertzoff, A. (1926) Die Morphologie der Brustflossen der Fische. Jenaische Zeitschrift für Naturwissenschaften 62: 343–392.

    Google Scholar 

  • Shubin, N. (1995) The evolution of paired fins and the origin of tetrapod limbs. Evolutionary Biology 28: 39–86.

    Google Scholar 

  • Sordino, P., van der Hoeven, F. and Duboule, D. (1995) Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375: 678–681.

    Article  PubMed  CAS  Google Scholar 

  • Sordino, P. and Duboule, D. (1996) A molecular approach to the evolution of vertebrate paired appendages. TREE 11: 114–119.

    Google Scholar 

  • Sun, X., Mariani, F. V. and Martin, G. R. (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Tabin, C. J. (1992) Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. Development 116: 289–296.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Münsterberg, A., Anerson, W. G., Prescott, A. R., Hazon, N., Tickle, C. (2002) Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416: 527–531.

    Article  PubMed  CAS  Google Scholar 

  • te Welscher, P., Fernandez-Teran, M., Ros, M. A. and Zeller, R. (2002a) Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev 16: 421–426.

    Article  Google Scholar 

  • te Welscher, P., Zuniga, A., Kuijper, S., Drenth, T., Goedemans, H. J., Meijlink, F., Zeller, R. (2002b) Progression of vertebrate limb development through Shh-mediated Counteraction of Gli3. Science 298: 827–830.

    Article  Google Scholar 

  • Tickle, C., Summerbell, D. and Wolpert, L. (1975) Positional signalling and specification of digits in chick limb morphogenesis. Nature 254, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, A. and Tickle, C. (1993). FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development 119: 199–206.

    PubMed  CAS  Google Scholar 

  • Vogel, A., Rodriguez, C. and Izpisua-Belmonte, J. C. (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122: 1737–1750.

    PubMed  CAS  Google Scholar 

  • Yelon, D., Ticho, B., Halpern, M. E., Ruvinsky, I., Ho, R. K., Silver, L. M. and Stainier, D. Y. (2000) The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127: 2573–2582.

    PubMed  CAS  Google Scholar 

  • Zangerl, R. (1981) Handbook of Paleoichthyology, Chondrichthyes I. Stuttgart New York: Gustav Fischer Verlag.

    Google Scholar 

  • Zúñiga, A., Haramis, A. P., McMahon, A. P. and Zeller, R. (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401: 598–602.

    Article  PubMed  Google Scholar 

  • Zúñiga, A. and Zeller, R. (1999) Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126: 13–21.

    PubMed  Google Scholar 

  • Zwilling, E. (1961) Limb morphogenesis. Advances in Morphogenesis 1: 301–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Grandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandel, H. Approaches to a comparison of fin and limb structure and development. Theory Biosci. 122, 288–301 (2003). https://doi.org/10.1007/s12064-003-0058-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0058-3

Key words

Navigation