Skip to main content

Advertisement

Log in

Mapping Human Impact on Net Primary Productivity Using MODIS Data for Better Policy Making

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

Tropical forests support core biological, hydrological and socioeconomic functions essential to life on earth. An assessment based on the Human Appropriation of Net Primary Production (HANPP) could help reduce exploitation of these forests, increasing their adaptive capacity and lessening their vulnerability to losses of Net Primary Productivity (NPP). Here we apply HANPP to the study area, based on Land Use Impact variability between the forest and contiguous roads and plantations by application of Geographical Information Systems of Protected Area Tools. We used the human activity index and biomass extraction from forest to study the effects of population pressure. The final land use impact map showed that the largest area of forest land (37 %) is now in urban and agricultural use, and that these areas are located within 0–3 km of the forest land. NPP with human intervention showed, total NPP of the forest decreased by 7.4 %, from 104.4 to 96.6 gCm−2 month−1. This study developed a new HANPP model and enhanced the usefulness of HANPP indicators by demonstrating the impact of human activity inside the forest. Because NPP changes most in higher–productivity areas, suitable policies should be enforced to avoid further human interference in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: a remote sensing approach. Forest Ecology and Management, 257(4), 1237–1246. doi:10.1016/j.foreco.2008.11.016.

    Article  Google Scholar 

  • As-syakur, A. R., Osawa, T., & Adnyana, I. W. S. (2010). Medium spatial resolution satellite imagery to estimate gross primary production in an urban area. Remote Sensing, 2(6), 1496–1507. doi:10.3390/rs2061496.

    Article  Google Scholar 

  • Band, L. E., Csillag, F., Ferera, A. H., & Baker, J. A. (1999). Deriving an Eco-regional framework for Ontario through large-scale estimates of net primary productivity (p. 30). Sautl Ste Marie: Ontario Forest Research Institute.

    Google Scholar 

  • Bhattarai, K., Conway, D., & Yousef, M. (2009). Determinants of deforestation in Nepal’s Central Development Region. Journal of Environmental Management, 91(2), 471–88. doi:10.1016/j.jenvman.2009.09.016.

    Article  Google Scholar 

  • Biudes, M. S., Souza, M. C., Machado, N. G., de Morais Danelichen, V. H., Vourlitis, G. L., & de Souza Nogueira, J. (2014). Modelling gross primary production of a tropical semi-deciduous forest in the southern Amazon Basin. International Journal of Remote Sensing, 35(4), 1540–1562. doi:10.1080/01431161.2013.878059.

    Article  Google Scholar 

  • Caccamo, G., Chisholm, L. A., Bradstock, R. A., & Puotinen, M. L. (2011). Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing of Environment, 115(10), 2626–2639. doi:10.1016/j.rse.2011.05.018.

    Article  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001). Net primary productivity in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications a Publication of the Ecological Society of America, 11(2), 371–384.

    Article  Google Scholar 

  • Clerici, N., Weissteiner, C. J., & Gerard, F. (2012). Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sensing, 4(12), 1781–1803. doi:10.3390/rs4061781.

    Article  Google Scholar 

  • Coops, N. C., Hilker, T., Hall, F. G., Nichol, C. J., & Drolet, G. G. (2010). Estimation of light-use efficiency of terrestrial ecosystems from space: a status report. BioScience, 60(10), 788–797. doi:10.1525/bio.2010.60.10.5.

    Article  Google Scholar 

  • Cracknell, A. P. (2010). The MODIS NPP (Net Primary Productivity) Product – Concept, Definition and Validation. In Proceeding of The Remote Sensiong and Photogrammetry Society Conference (p. 12). London. Remote Sensing and Photogrammetry Society.

  • Department of Statistics Malaysia, (2012). State/District Data Bank, Malaysia 2012 (p. 332). Putrajaya: Prime Minister’s Department.

    Google Scholar 

  • DID. (2005). Department of Irrigation and Drainage Malaysia. Drought Report of Peninsular Malaysia (p. 10). Kuala Lumpur: Hydrology and Water Resources Division, Ministry of Natural Resources and Environment.

    Google Scholar 

  • Donmez, C., Berberoglu, S., & Curran, P. J. (2011). Modelling the current and future spatial distribution of NPP in a Mediterranean watershed. International Journal of Applied Earth Observation and Geoinformation, 13(3), 336–345. doi:10.1016/j.jag.2010.12.005.

    Article  Google Scholar 

  • Erb, K. H., Krausmann, F., Gaube, V., Gingrich, S., Bondeau, A., Fischer-Kowalski, M., & Haberl, H. (2009). Analyzing the global human appropriation of net primary production—processes, trajectories, implications. An introduction. Ecological Economics, 69(2), 250–259. doi:10.1016/j.ecolecon.2009.07.001.

    Article  Google Scholar 

  • Etter, A., McAlpine, C. A., Seabrook, L., & Wilson, K. A. (2011). Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biological Conservation, 144(5), 1585–1594. doi:10.1016/j.biocon.2011.02.004.

    Article  Google Scholar 

  • Fabricante, I., Oesterheld, M., & Paruelo, J. M. (2009). Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia. Journal of Arid Environments, 73(8), 745–753. doi:10.1016/j.jaridenv.2009.02.006.

    Article  Google Scholar 

  • Faidi, M. A., Ibrahim, A. L., Wahid, A. R., & Huey, T. (2010). The capability of eco-physiological approach to determine Net Primary Productivity (NPP) of Tropical rainforest using remote sensing data. In 31st Asian Conference on Remote Sensing 2010, ACRS 2010 (pp. 727–733). Hanoi.

  • FDTCP. (2003). Final technical report, package B: physical planning, urban centres and hierarchy, Rancangan Fizikal Negara. Kuala Lumpur: Federal Department of Town and Country Planning.

    Google Scholar 

  • Fensholt, R., & Sandholt, I. (2003). Derivation of a shortwave infrared water stress index from MODIS near and shortwave infrared data in a semiarid environment. Remote Sensing of Environment, 87(1), 111–121. doi:10.1016/j.rse.2003.07.002.

    Article  Google Scholar 

  • Forestry Department of Peninsula Malaysia. (2004). National Forest Inventory Series 4 (NFI–4), Kuala Lumpur.

  • Geist, H., & Lambin, E. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 2(52), 143–150.

    Article  Google Scholar 

  • Goward, S. N., Waring, R. H., Dye, D. G., & Yang, J. (1994). Ecological remote sensing at OTTER: satellite macroscale observations. Ecological Applications, 4, 322–343.

    Article  Google Scholar 

  • Haberl, H., Wackernagel, M., Krausmann, F., Erb, K.-H., & Monfreda, C. (2004). Ecological footprints and human appropriation of net primary production: a comparison. Land Use Policy, 21(3), 279–288. doi:10.1016/j.landusepol.2003.10.008.

    Article  Google Scholar 

  • Haberl, H., Erb, K. H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., et al. (2011). Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass and Bioenergy, 35(12), 4753–4769. doi:10.1016/j.biombioe.2011.04.035.

    Article  Google Scholar 

  • Handcock, R. N., & Csillag, F. (2004). Spatio-temporal analysis using a Multiscale Hierarchical Ecoregionalization. Photogrammetric Engineering & Remote Sensing, 70(1), 101–110.

    Article  Google Scholar 

  • Hazarika, M. K., Yasuoka, Y., Ito, A., & Dye, D. (2005). Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sensing of Environment, 94(3), 298–310. doi:10.1016/j.rse.2004.10.004.

    Article  Google Scholar 

  • Hou, J., Walsh, P. P., & Zhang, J. (2014). The dynamics of human development index. The Social Science Journal. doi:10.1016/j.soscij.2014.07.003.

    Google Scholar 

  • Hu, Z. B., He, X. Y., & Li, Y. H. (2007). HAI and its spatial distribution pattern in upper reach of Minjiang river. China Journal Ecology, 26, 539e–543. in Chinese.

    Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195–213. doi:10.1016/S0034-4257(02)00096-2.

    Article  Google Scholar 

  • Huete, A. R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S. R., Ichii, K., Panuthai, S., & Gamo, M. (2008). Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and Forest Meteorology, 148(5), 748–760. doi:10.1016/j.agrformet.2008.01.012.

    Article  Google Scholar 

  • Ichii, K., Hashimoto, H., Nemani, R., & White, M. (2005). Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global and Planetary Change, 48(4), 274–286. doi:10.1016/j.gloplacha.2005.02.005.

    Article  Google Scholar 

  • Ingram, J. C., Dawson, T. P., & Whittaker, R. J. (2005). Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94(4), 491–507. doi:10.1016/j.rse.2004.12.001.

    Article  Google Scholar 

  • International Energy Agency (2013). World Energy Outlook. Paris, Cedex. http://www.iea.org/.

  • Jaafar, J. (2004). Emerging trends of urbanisation in Malaysia. Journal of The Department of Statistics Malaysia, 43–54.

  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.

    Google Scholar 

  • Joseph, S., van Laake, P. E., Thomas, A. P., & Eklundh, L. (2012). Comparison of carbon assimilation estimates over tropical forest types in India based on different satellite and climate data products. International Journal of Applied Earth Observation and Geoinformation, 18, 557–563. doi:10.1016/j.jag.2011.10.008.

    Article  Google Scholar 

  • JUPEM. (2000). CAD data series. Kuala Lumpur: Malaysian Survey and Mapping Department.

    Google Scholar 

  • Kastner, T. (2009). Trajectories in human domination of ecosystems: human appropriation of net primary production in the Philippines during the 20th century. Ecological Economics, 69(2), 260–269. doi:10.1016/j.ecolecon.2009.08.019.

    Article  Google Scholar 

  • Kimball, J. S., Zhao, M., McDonald, K. C., & Running, S. W. (2006). Satellite remote sensing of terrestrial net primary production for the pan-arctic basin and Alaska. Mitigation and Adaptation Strategies for Global Change, 11(4), 783–804. doi:10.1007/s11027-005-9014-5.

    Article  Google Scholar 

  • Kochummen, K. M. (1990). Floristic composition of Pasoh forest reserve, a lowland rain forest in peninsular Malaysia. Journal of Tropical Forest Science, 3(1), 1–13.

    Google Scholar 

  • Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., & Nik Abdul, R. (2008). CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia. Agricultural and Forest Meteorology, 148(3), 439–452. doi:10.1016/j.agrformet.2007.10.007.

    Article  Google Scholar 

  • Krausmann, F., Haberl, H., Erb, K. H., & Wackernagel, M. (2004). Resource flows and land use in Austria 1950–2000: Using the MEFAframework to monitor society-nature interaction. Land Use Policy. doi:10.1016/j.landusepol.2003.10.005.

    Google Scholar 

  • Krausmann, F., Erb, K. H., Gingrich, S., Lauk, C., & Haberl, H. (2008). Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65(3), 471–487. doi:10.1016/j.ecolecon.2007.07.012.

    Article  Google Scholar 

  • Landmann, T., & Dubovyk, O. (2014). Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. International Journal of Applied Earth Observation and Geoinformation, 33, 76–82. doi:10.1016/j.jag.2014.04.020.

    Article  Google Scholar 

  • Le, Q. B., Tamene, L., & Vlek, P. L. G. (2012). Multi-pronged assessment of land degradation in West Africa to assess the importance of atmospheric fertilization in masking the processes involved. Global and Planetary Change, 92–93, 71–81. doi:10.1016/j.gloplacha.2012.05.003.

    Article  Google Scholar 

  • Lele, N., Nagendra, H., & Southworth, J. (2010). Accessibility, demography and protection: drivers of forest stability and change at multiple scales in the Cauvery Basin, India. Remote Sensing, 2(1), 306–332. doi:10.3390/rs2010306.

    Article  Google Scholar 

  • Liu, M., Zhang, D., Min, Q., Xie, G., & Su, N. (2014). The calculation of productivity factor for ecological footprints in China: a methodological note. Ecological Indicators, 38, 124–129. doi:10.1016/j.ecolind.2013.11.003.

    Article  Google Scholar 

  • Malaysian Agricultural Department. (2004). Present land use map of Negeri Sembilan. Putrajaya: Soil Resource Conservation and Management Division, Malaysian Agricultural Department.

    Google Scholar 

  • Mansor, S., Shariah, M. A., Billa, L., Setiawan, I., & Jabar, F. (2004). Spatial technology for natural risk management. Disaster Prevention and Management, 13(5), 364–373. doi:10.1108/09653560410568480.

    Article  Google Scholar 

  • Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7(11), 2636–2651. doi:10.3390/s7112636.

    Article  Google Scholar 

  • McPherson, M., Schill, S., Raber, G., JOhn, K., Zenny, N., Thurlow, K., & Sutton, A. (2008). H. (2008). GIS-based Modeling of Environmental Risk Surfaces (ERS) for conservation planning in Jamaica. Journal of Conservation Planning, 4, 60–89.

    Google Scholar 

  • Mohd Basri, W., Lim, W. S., & Mohd Arif, S. (2002). Technological development and new growth areas of the oil palm industry. Oil Palm Industry Economic Journal, 71(1), 1–8.

    Google Scholar 

  • Mon, M. S., Mizoue, N., Htun, N. Z., Kajisa, T., & Yoshida, S. (2012). Factors affecting deforestation and forest degradation in selectively logged production forest: a case study in Myanmar. Forest Ecology and Management, 267, 190–198. doi:10.1016/j.foreco.2011.11.036.

    Article  Google Scholar 

  • Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solorzano, L., Moutinho, P., Ray, D., & Benito, G. J. (2004). Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology, 10(5), 704–717. doi:10.1111/j.1529-8817.2003.00772.x.

    Article  Google Scholar 

  • NRE. (1998). The National Biodiversity Policy 1998. Ministry of Natural Resources and Environmental, Putrajaya. (p. 38).

  • Pennec, A., Gond, V., & Sabatier, D. (2011). Tropical forest phenology in French Guiana from MODIS time series. Remote Sensing Letters, 2(4), 337–345. doi:10.1080/01431161.2010.507610.

    Article  Google Scholar 

  • Potter, C., Klooster, S., & Genovese, V. (2012). Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2), 365–378. doi:10.1007/s10584-012-0460-2.

    Article  Google Scholar 

  • Potter, C., Klooster, S., Genovese, V., & Hiatt, C. (2013). Forest production predicted from satellite image analysis for the Southeast Asia region. Carbon Balance and Management, 8(1), 9. doi:10.1186/1750-0680-8-9.

    Article  Google Scholar 

  • Prince, S. D., & Goward, S. N. (2011). Global primary production: a remote sensing approach. Journal of Biogeography, 22(4), 815–835.

    Google Scholar 

  • Qasim, M., Hubacek, K., & Termansen, M. (2013). Underlying and proximate driving causes of land use change in district Swat, Pakistan. Land Use Policy, 34, 146–157. doi:10.1016/j.landusepol.2013.02.008.

    Article  Google Scholar 

  • Ramli, N. N., Shamsudin, M. N., Mohamed, Z., & Radam, A. (2012). The impact of fertilizer subsidy on Malaysia paddy/rice industry using a system dynamics approach. International Journal of Social and Humanity, 2(3), 213–219.

    Google Scholar 

  • Rasib, A. W., Ibrahim, A. L., Cracknell, A. P., & Faidi, M. A. (2008). Local scale mapping of net primary production in tropical rain forest using MODIS satellite data. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Science, 37(Part B7), 1441–1446.

    Google Scholar 

  • Razali, S. M., Nuruddin, A. A., Malek, I. A., & Patah, N. A. (2010). Forest fire hazard rating assessment in peat swamp forest using Landsat thematic mapper image. Journal of Applied Remote Sensing, 4(1), 043531. doi:10.1117/1.3430040.

    Article  Google Scholar 

  • Razali, S. M., Marin, A., Nuruddin, A. A., Shafri, H. Z. M., & Hamid, H. A. (2014). Capability of integrated MODIS imagery and ALOS for oil palm, rubber and forest areas mapping in tropical forest regions. Sensors (Basel, Switzerland), 14(5), 8259–82. doi:10.3390/s140508259.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS, third ERTS symposium. NASA, SP-351(I), 309–317.

    Google Scholar 

  • Rulinda, C. M., Dilo, A., Bijker, W., & Stein, A. (2012). Characterising and quantifying vegetative drought in East Africa using fuzzy modelling and NDVI data. Journal of Arid Environments, 78, 169–178. doi:10.1016/j.jaridenv.2011.11.016.

    Article  Google Scholar 

  • Sakamoto, T., Gitelson, A. A., Wardlow, B. D., Verma, S. B., & Suyker, A. E. (2011). Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data. Remote Sensing of Environment, 115(12), 3091–3101. doi:10.1016/j.rse.2011.06.015.

    Article  Google Scholar 

  • Schwarzlmüller, E. (2009). Human appropriation of aboveground net primary production in Spain, 1955–2003: an empirical analysis of the industrialization of land use. Ecological Economics, 69(2), 282–291. doi:10.1016/j.ecolecon.2009.07.016.

    Article  Google Scholar 

  • Seppala, R., Buck, A., & Katila, P. (2009). Adaptation of forest and—a global assessment report. International Union of Forest Research Organization (IUFRO), 22, 224.

    Google Scholar 

  • Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41. doi:10.1016/j.apgeog.2006.09.004.

    Article  Google Scholar 

  • Srebotnjak, T., Polzin, C., Giljum, S., Herbert, S., & Lutter, S. (2010). Establishing environmental sustainability thresholds and indicators, final report, (November). Berlin: Ecologic Institute.

    Google Scholar 

  • Su, C., Fu, B. J., He, C. S., & Lü, Y. H. (2012). Variation of ecosystem services and human activities: a case study in the Yanhe Watershed of China. Acta Oecologica, 44, 46–57. doi:10.1016/j.actao.2011.11.006.

    Article  Google Scholar 

  • Tseng, D. C., Tseng, H. T., & Chien, C. L. (2008). Automatic cloud removal from multi-temporal SPOT images. Applied Mathematics and Computation, 2(205), 548–600.

    Google Scholar 

  • UNDP. (2013). Human development report 2013. The rise of the south, human progress in a diverse world. Afrique Contemporaine, 246, 164. doi:10.3917/afco.246.0164.

    Article  Google Scholar 

  • Valente, R. D. O. A., & Vettorazzi, C. A. (2008). Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecology and Management, 256, 1408–1417. doi:10.1016/j.foreco.2008.07.006.

    Article  Google Scholar 

  • Vu, Q. M., Le, Q. B., & Vlek, P. L. G. (2014). Hotspots of human-induced biomass productivity decline and their social–ecological types toward supporting national policy and local studies on combating land degradation. Global and Planetary Change, 121, 64–77. doi:10.1016/j.gloplacha.2014.07.007.

    Article  Google Scholar 

  • World Population Review. (2014). Malaysia Population 2014–World Population Review. http://worldpopulationreview.com/.

  • Wrbka, T., Erb, K.-H., Schulz, N. B., Peterseil, J., Hahn, C., & Haberl, H. (2004). Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy, 21(3), 289–306. doi:10.1016/j.landusepol.2003.10.012.

    Article  Google Scholar 

  • Xiao, X., Hollinger, D., Aber, J., Goltz, M., Davidson, E. A., Zhang, Q., & Moore, B. (2004). Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89, 519–534. doi:10.1016/j.rse.2003.11.008.

    Article  Google Scholar 

  • Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S., Boles, S., Keller, M., & Moore, B., III. (2005). Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94, 105–122. doi:10.1016/j.rse.2004.08.015.

    Article  Google Scholar 

  • Xiao, X., Hagen, S., Zhang, Q., Keller, M., & Moore, B., III. (2006). Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing of Environment, 103, 465–473. doi:10.1016/j.rse.2006.04.013.

    Article  Google Scholar 

  • Xiong, X., Isaacman, A., & Barnes, W. (2006). MODIS level-1B products. Earth Science Satellite Remote Sensing, 33–49.

  • Yang, H., Mu, S., & Li, J. (2014). Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena, 115, 85–95. doi:10.1016/j.catena.2013.11.020.

    Article  Google Scholar 

  • Zhou, S., Huang, Y., Yu, B., & Wang, G. (2014). Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecological Engineering, 76, 14–26. doi:10.1016/j.ecoleng.2014.04.020.

    Article  Google Scholar 

  • Zhou, W., Gang, C., Zhou, F., Li, J., Dong, X., & Zhao, C. (2015). Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecological Indicators, 48, 560–569. doi:10.1016/j.ecolind.2014.08.043.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministry of Education of Malaysia, the Ministry of Higher Education of Malaysia and the Universiti Putra Malaysia through research grant no. 5524108. We thank the Institute of Social Ecology, Klagenfurt University, Vienna, for Global patterns of socioeconomic biomass flows in the year 2000 (online data set), to the Forestry Department of Peninsular Malaysia for forestry data layers, and the Department of Survey and Mapping of Malaysia for human activity data layers. We also thank LP DAAC for the MODIS data for calculating NPP obtained through the online Data Pool at the NASA LP DAAC, USGS/Earth Resources Observation and Science (EROS) Centre, Sioux Falls, South Dakota. Finally, we thank the Erasmus Mundus for MOVER program, that funded by the European Commission and a partnership between the University of Murcia, Spain and the Universiti Putra Malaysia for providing the study grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheriza Mohd Razali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razali, S.M., Atucha, A.A.M., Nuruddin, A.A. et al. Mapping Human Impact on Net Primary Productivity Using MODIS Data for Better Policy Making. Appl. Spatial Analysis 9, 389–411 (2016). https://doi.org/10.1007/s12061-015-9156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-015-9156-0

Keywords

Navigation