Skip to main content
Log in

Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximation for various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultra-relativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. S L Shapiro and S A Teukolsky, in: Black holes, white dwarfs and neutron stars – The physics of compact object (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2004)

  2. D Lai, Rev. Mod. Phys. 73, 629 (2001)

    Article  ADS  Google Scholar 

  3. V E Fortov, I T Lakubov and A G Khrapak, Physics of strongly coupled plasma (Clarendon, Oxford, 2006)

    Book  MATH  Google Scholar 

  4. G Manfredi, Fields Inst. Commun. 46, 263 (2005)

    MathSciNet  Google Scholar 

  5. M Marklund et al, Euro. Phys. Lett. 84, 17006 (2008)

    Article  ADS  Google Scholar 

  6. S A Khan and M Bonitz, Quantum hydrodynamics, in: Complex plasmas: Scientific challenges and technological opportunities edited by M Bonitz, K Becker, J Lopez and H Thomsen (Springer, Berlin, 2013)

  7. S H Glenzer, O L Landen, P Neumayer, R W Lee, K Widmann, S W Pollaine, R J Wallace, G Gregori, A Höll, T Bornath, R Thiele, V Schwarz, W-D Kraeft and R Redmer, Phys. Rev. Lett. 98, 065002 (2007)

    Article  ADS  Google Scholar 

  8. S H Glenzer and R Redmer, Rev. Mod. Phys. 81, 1625 (2009)

    Article  ADS  Google Scholar 

  9. C P Ridgers, C S Brady, R Duclous, J G Kirk, K Bennett, T D Arber, A P L Robinson and A R Bell, Phys. Rev. Lett. 108, 165006 (2012)

    Article  ADS  Google Scholar 

  10. D Koester and G Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  11. P A Bradley, P E Winget and M A Wood, Astrophys. J. 406, 661 (1993)

    Article  ADS  Google Scholar 

  12. P K Shukla, A A Mamun and D A Mendis, Phys. Rev. E 84, 026405 (2011)

    Article  ADS  Google Scholar 

  13. P K Shukla, D A Mendis and I Krasheninnikov, J. Plasma Phys. 77, 571 (2011)

    Article  ADS  Google Scholar 

  14. A P Misra and P K Shukla, Phys. Plasmas 18, 042308

  15. M Akbari Moghanjoughi, Astrophys. Space Sci. 333, 491 (2011)

    Article  ADS  Google Scholar 

  16. S A Khan, Astrophys. Space Sci. 340, 71 (2013)

    Article  ADS  Google Scholar 

  17. S A Khan, Astrophys. Space Sci. 343, 683 (2013)

    Article  ADS  Google Scholar 

  18. A A Mamun and P K Shukla, Europhys. Lett. 94, 65002 (2011)

    Article  ADS  Google Scholar 

  19. A A Mamun and P K Shukla, Phys. Plasmas 17, 104504 (2010)

    Article  ADS  Google Scholar 

  20. L Nahar, M S Zobaer, N Roy, and A A Mamun, Phys. Plasmas 20, 022304 (2013)

    Article  ADS  Google Scholar 

  21. A -u Rahman, S A Khan, and A Qamar, Astrophys. Space Sci. 347, 119 (2013)

    Article  ADS  Google Scholar 

  22. S Chandrasekhar, Philos. Mag. (Suppl.) 11, 592 (1931)

    Article  Google Scholar 

  23. S Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 676 (1935)

    Article  ADS  Google Scholar 

  24. H Ren, Z Wu, J Cao, and P K Chu, J. Phys. A: Math. Theor. 41, 115501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. P K Shukla and L Stenflo, Phys. Lett. A 357, 229 (2006)

    Article  ADS  Google Scholar 

  26. P K Shukla and L Stenflo, New J. Phys. 8, 111 (2006)

    Article  ADS  Google Scholar 

  27. N D Angelo, Phys. Fluids 8, 1748 (1965)

    Article  ADS  Google Scholar 

  28. M Bonitz, C Henning, and D Block, Rep. Prog. Phys. 73, 066501 (2010)

    Article  ADS  Google Scholar 

  29. M Bonitz, P Ludwig, H Baumgartner, C Henning, A Filinov, D Block, O Arp, A Piel , S Käding, Y Ivanov, A Melzer, H Fehske, and V Filinov, Phys. Plasmas 15, 055704 (2008)

    Article  ADS  Google Scholar 

  30. E Liang et al, in: Report of the workshop on research opportunities in plasma astrophysics edited by P Wieser (Princeton Plasma Physics Laboratory, Princeton, 2010) p. 97

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHABBIR A KHAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHAN, S.A., BAKHTIAR-UD-DIN, ILYAS, M. et al. Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma. Pramana - J Phys 86, 1143–1151 (2016). https://doi.org/10.1007/s12043-015-1134-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-1134-1

Keywords

PACS Nos

Navigation