Skip to main content
Log in

A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A monolayer of MoSe2 is found to be a direct band-gap semiconductor. We show, within ab-initio electronic structure calculations, that a modest biaxial tensile strain of 3% can drive it into an indirect band-gap semiconductor with the valence band maximum (VBM) shifting from K point to Γ point. An analysis of the charge density reveals that while Mo–Mo interactions contribute to the VBM at 0% strain, Mo–Se interactions contribute to the highest occupied band at Γ point. A scaling of the hopping interaction strengths within an appropriate tight binding model can capture the transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. K H Hu, X G Hu, and X J Sun, Appl. Surf. Sci. 256, 2517 (2010)

    Article  ADS  Google Scholar 

  2. W K Ho, J C Yu, J Lin, J G Yu, and P S Li, Langmuir 20, 5865 (2004)

    Article  Google Scholar 

  3. E Fortin and W Sears, J. Phys. Chem. Solids 43, 881 (1982)

    Article  ADS  Google Scholar 

  4. C Feng, J Ma, H Li, R Zeng, Z Guo, and H Liu, Mater. Res. Bull. 44, 1811 (2009)

    Article  Google Scholar 

  5. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, and A A Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  6. A H C Neto, F Guinea, N M R Peres, K S Novoselov, and A K Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. Y Wu, Y -M Lin, A A Bol, K A Jenkins, F Xia, D B Farmer, Y Zhu, and P Avouris, Nature 472, 74 (2011)

    Article  ADS  Google Scholar 

  8. C Lee, H Yan, L E Brus, T F Heinz, J Hone, and S Ryu, ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  9. A D Yoffe, Annu. Rev. Mater. Sci. 3, 147 (1973)

    Article  ADS  Google Scholar 

  10. G L Frey, S Elani, M Homyonfer, Y Feldman, and R Tenne, Phys. Rev. B 57, 6666 (1998)

    Article  ADS  Google Scholar 

  11. R Das, B Rakshit, S Debnath, and P Mahadevan, Phys. Rev. B 89, 115201 (2014)

    Article  ADS  Google Scholar 

  12. W A Harrison, Electronic structure and the properties of solids: The physics of the chemical bond ( Dover, New York, USA, 1967)

    Google Scholar 

  13. S Tongay, J Zhou, C Ataca, K Lo, T S Matthews, J Li, J C Grossman, and J Wu, Nano Lett. 12, 5576 (2012)

    Article  ADS  Google Scholar 

  14. G Kresse and J Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  15. G Kresse and D Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  16. J Paier, R Hirschl, M Marsman, and G Kresse, J. Chem. Phys. 122, 234102 (2005)

    Article  ADS  Google Scholar 

  17. P Mahadevan, N Shanthi, and D D Sarma, Phys. Rev. B 54, 11, 199 (1996)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Science and Technology (DST) India, Nanomission for funding through an individual project, the Thematic Unit of Excellence on Computational Materials Science (TUE-comp) as well as the Unit of Nanoscience and Nanotechnology (UNANST). RD thanks the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Mahadevan, P. A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain. Pramana - J Phys 84, 1033–1040 (2015). https://doi.org/10.1007/s12043-015-0996-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0996-6

Keywords

PACS Nos

Navigation