Skip to main content
Log in

Systematic study of multiparticle production in nucleus–nucleus interactions at 14.6 A GeV

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An experimental analysis of 855 events induced by 14.6 A GeV 28Si in nuclear emulsion is presented. Mean multiplicities of charged secondary particles produced in the nuclear interactions are studied and compared with the results from the other experiments for the same projectile at 3.7 A GeV as well as data for proton at similar energy (14 GeV). An analysis of pseudorapidity densities of target fragments (black and grey particles) is also performed. The behaviour of the KNO scaling law of the multiplicity distribution for shower particles has been examined. In order to accumulate knowledge about the intermittent behaviour of shower particles, the scaled factorial moments (SFMs) are computed in η-space and ϕ-space for a set of data in the 28Si–AgBr events. Furthermore, validity of limiting fragmentation of shower particles produced in central collision events induced by 28Si-emulsion interactions has been tested. A crude estimation for the energy density of the nuclear matter formed in the central collision events at our energy has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J D Bjorken, Phys. Rev . D 27, 140 (1983)

    Article  ADS  Google Scholar 

  2. D Anchishkin, A Muskeyev and S Yezhov, Phys. Rev . C 81, 031902 (2010)

    Article  ADS  Google Scholar 

  3. Thorsten Renk, Phys. Rev . C 70, 021903 (2004)

    Article  ADS  Google Scholar 

  4. J L Nagle, Phys. Rev . C 73, 1219 (1994)

    ADS  Google Scholar 

  5. J I Kaputsa and S M H Wong, Phys. Rev . C 59, 3317 (1999)

    Article  ADS  Google Scholar 

  6. A Bialas and R Peschanski, Nucl. Phys. B 273, 703 (1986); Nucl. Phys. B 308, 857 (1988)

    Google Scholar 

  7. JACEE Collaboration: T H Burnett et al, Phys. Rev . Lett. 50, 2062 (1983)

    Article  ADS  Google Scholar 

  8. C P Singh, Phys. Rep. 236, 147 (1993)

    Article  ADS  Google Scholar 

  9. B Buschbeck, R Lipa and R Peschanski, Phys. Lett. B 215, 788 (1988)

    Article  ADS  Google Scholar 

  10. DELPHI Collaboration: P Abreu et al, Phys. Lett. B 247, 137 (1990)

    Article  ADS  Google Scholar 

  11. TASSO Collaboration: W Braunschweig et al, Phys. Lett. B 231, 306 (1989)

    Article  Google Scholar 

  12. G Gustafson and C Sjogren, Phys. Lett. B 248, 430 (1990)

    Article  ADS  Google Scholar 

  13. NA22 Collaboration: I V Ajinenko et al, Phys. Lett. B 222, 306 (1989)

    Article  ADS  Google Scholar 

  14. NA22 Collaboration: I V Ajinenko et al, Phys. Lett. B 235, 373 (1990)

    Article  ADS  Google Scholar 

  15. UAI Collaboration: C Albajar et al, Nucl. Phys. B 345, 1 (1990)

  16. NA22 Collaboration: N M Agababyan et al, Phys. Lett. B 382, 305 (1996)

  17. NA22 Collaboration: N M Agababyan et al, Phys. Lett. B 431, 451 (1998)

  18. R Holynski et al, Phys. Rev . Lett. 62, 733 (1989)

  19. KLM Collaboration: R Holynski et al, Phys. Rev . C 40, R2449 (1989)

  20. D Ghosh et al, Phys. Rev . C 70, 054903 (2004)

  21. M I Adamovich et al, Phys. Rev . Lett. 65, 412 (1990)

  22. K Sengupta et al, Phys. Lett. B 236, 219 (1990)

  23. B Bhattacharjee, Nucl. Phys. A 748, 641 (2005)

    Article  ADS  Google Scholar 

  24. HELLOS Emulsion Collaboration: T Akesson et al, Phys. Lett. B 252, 303 (1990)

    Google Scholar 

  25. D Ghosh et al, Phys. Lett. B 272, 5 (1991); Phys. Rev . C 47, 1120 (1993); C 58, 3553 (1998); J. Phys. G: Nucl. Phys. 29, 983, 2087 (2003); Chin. Phys. Lett. 23, 1441 (2006); Int. J. Mod. Phys. E 12, 407 (2003)

  26. P L Jain and G Sing, Nucl. Phys. A 596, 700 (1996)

    Article  ADS  Google Scholar 

  27. M M Smolarleiewicz et al, Acta Phys. Pol. B 31, 385 (2000)

    ADS  Google Scholar 

  28. R A Janik and Z Beat, Acta Phys. Pol. B 30, 259 (1999)

    ADS  Google Scholar 

  29. A Bialas and B Ziaj, Phys. Lett. B 378, 319 (1996)

    Article  ADS  Google Scholar 

  30. G Das et al, Phys. Rev . C 54, 2081 (1996)

    Article  ADS  Google Scholar 

  31. S Ahmad and M Ayaz Ahma, Nucl. Phys. A 780, 206 (2006)

    Article  ADS  Google Scholar 

  32. J S Li, F H Liu and D H Zhang, Chin. Phys. Lett. 10, 2789 (2007)

    ADS  Google Scholar 

  33. J Benecke, T T Chou, C N Yang and E Yen, Phys. Rev . 188, 2159 (1969)

    Article  ADS  Google Scholar 

  34. M El-Nadi, M S El-Nagdi and A M Abd-Allah, Phys. Rev . C 48, 870 (1993)

    Article  ADS  Google Scholar 

  35. C Bricman et al, Nuov o Cimento 20, 1018 (1961)

    Google Scholar 

  36. Ashwini Kumar, G Singh and B K Singh, J. Phys. Soc. Jpn 81, 124202 (2012)

  37. B K Singh, I D Ojha and S K Tuli, Nucl. Phys. A 570, 822 (1994)

  38. A Abduzhamilova et al, Phys. Rev . D 35, 3537 (1987)

  39. S El-Sharkawy et al, Phys. Scr. 47, 512 (1993)

  40. EMU-01 Collaboration: M I Adamovich et al, Z. Phys. C 56, 509 (1992)

    Google Scholar 

  41. K Fialkowski et al, Acta. Phys. Pol. B 20, 639 (1989)

    Google Scholar 

  42. A Bialas and M Gradzicki, Phys. Lett. B 252, 483 (1990)

    Article  ADS  Google Scholar 

  43. P Mali, A Mukhopadhyay and G Singh, Can. J. Phys. 89, 949 (2011)

    Article  ADS  Google Scholar 

  44. Z Koba, H B Neilsen and P Olesen, Nucl. Phys. B 40, 317 (1972)

    Article  ADS  Google Scholar 

  45. P Slattery, Phys. Rev . Lett. 29, 1624 (1972)

    Article  ADS  Google Scholar 

  46. A J Buras, J Dias De Deus and R Moller, Phys. Lett. B 47, 251 (1973)

    Article  ADS  Google Scholar 

  47. B K Singh and S K Tuli, Nucl. Phys. A 602, 487 (1996)

    Article  ADS  Google Scholar 

  48. B Andersson et al, Phys. Rep. 97, 31 (1983) B Nilsson-Almqvist and E Stenlund, Comput. Phys. Commun. 43, 387 (1987) T Sjostrand, Comput. Phys. Commun. 39, 347 (1986)

    Google Scholar 

  49. EMU-01 Collaboration: I Otterlund et al, Phys. Scr. T32, 168 (1990)

    Google Scholar 

  50. M El-Nadi et al, J. Phys. G: Nucl. Part. Phys. 19, 2027 (1997)

    Article  ADS  Google Scholar 

  51. M Gyulassy, D H Rischke and Bin Zhang, Nucl. Phys. A 613, 397 (1997)

    Article  ADS  Google Scholar 

  52. PHENIX Collaboration: K Adcox et al, Nucl. Phys. A 757, 184 (2005)

    Google Scholar 

  53. L D Landau, Izv . Akad. Nauk SSSR 17, 51 (1953) C-Y Wong, Phys. Rev . C 78, 054902 (2008)

  54. A S Godhaber, Nature 275, 114 (1978) C P Singh, Int. J. Mod. Phys A 7, 7185 (1992)

    Google Scholar 

Download references

Acknowledgements

AK is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing a research grant. The authors would like to thank Prof. Amitabha Mukhopadhyay for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASHWINI KUMAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, A., SINGH, G. & SINGH, B.K. Systematic study of multiparticle production in nucleus–nucleus interactions at 14.6 A GeV. Pramana - J Phys 81, 103–115 (2013). https://doi.org/10.1007/s12043-013-0552-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0552-1

Keywords

PACS

Navigation