Skip to main content
Log in

The Standard Model with one universal extra dimension

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Effects of universal extra dimensions on Standard Model observables first arise at the one-loop level. The quantization of this class of theories is therefore essential in order to perform predictions. A comprehensive study of the SU C(3) × SU L(2) × U Y(1) Standard Model defined in a space-time manifold with one universal extra dimension, compactified on the oribifold \(S^1/Z_2\), is presented. The fact that the four-dimensional Kaluza–Klein theory is subjected to two types of gauge transformations is stressed and its quantization under the basis of the BRST symmetry discussed. A SU C(3) × SU L(2) × U Y(1)-covariant gauge-fixing procedure for the Kaluza–Klein excitations is introduced. The connection between gauge and mass eigenstate fields is established in an exact way. An exhaustive list of the explicit expressions for all physical couplings induced by the Yang–Mills, Currents, Higgs, and Yukawa sectors is presented. The one-loop renormalizability of the standard Green’s functions, which implies that the Standard Model observables do not depend on a cut-off scale, is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I Antoniadis, Phys. Lett. B246, 377 (1990) N Arkani-Hamed, S Dimopoulos and G R Dvali, Phys. Lett. B429, 263 (1998) I Antoniadis, N Arkani-Hamed, S Dimopoulos and G R Dvali, Phys. Lett. B436, 257 (1998)

  2. T Appelquist, H-C Cheng and B A Dobrescu, Phys. Rev. D64, 035002 (2001)

    ADS  Google Scholar 

  3. G Servant and T M P Tait, New J. Phys. 4, 99 (2002) H-C Cheng, J L Feng and K T Matchev, Phys. Rev. Lett. 89, 211301 (2002) G Servant and T M P Tait, Nucl. Phys. B650, 391 (2003) L Bergström, T Bringmann, M Eriksson and M Gustafsson, J. Cosmol. Astropart. Phys. 0504, 004 (2005) S Matsumoto and M Senami, Phys. Lett. B633, 671 (2006) M Kakizaki, S Matsumoto, Y Sato and M Senami, Nucl. Phys. B735, 84 (2006) M Kakizaki, S Matsumoto and M Senami, Phys. Rev. D74, 023504 (2006) F Burnell and G D Kribs, Phys. Rev. D73, 015001 (2006) S Matsumoto, J Sato, M Senami and M Yamanaka, Phys. Rev. D76, 043528 (2007) J A R Cembranos, J L Feng and L E Strigari, Phys. Rev. D75, 036004 (2007) M Blennow, H Melbeus and T Ohlsson, J. Cosmol. Astropart. Phys. 1001, 018 (2010)

  4. S Matsumoto, J Sato, M Senami and M Yamanaka, Phys. Rev. D76, 043528 (2007) S Matsumoto, J Sato, M Senami and M Yamanaka, Phys. Lett. B647, 466 (2007)

  5. F J Petriello, J. High Energy Phys. 0205, 003 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  6. T Appelquist and H-U Yee, Phys. Rev. D67, 055002 (2003)

    ADS  Google Scholar 

  7. P Bandyopadhyay, B Bhattacherjee and A Datta, J. High Energy Phys. 1003, 048 (2010)

    Article  ADS  Google Scholar 

  8. H Novales-Sánchez and J J Toscano, Phys. Rev. D84, 057901 (2011)

    ADS  Google Scholar 

  9. A J Buras, M Spranger and A Weiler, Nucl. Phys. B660, 225 (2003)

    Article  ADS  Google Scholar 

  10. A J Buras, A Poschenrieder, M Spranger and A Weiler, Nucl. Phys. B678, 455 (2004)

    Article  ADS  Google Scholar 

  11. E O Iltan, J. High Energy Phys. 0402, 065 (2004)

    Article  ADS  Google Scholar 

  12. S Khalil and R Mohapatra, Nucl. Phys. B695, 313 (2004)

    Article  ADS  Google Scholar 

  13. T G Rizzo, Phys. Rev. D64, 095010 (2001) H-C Cheng, K T Matchev and M Schmaltz, Phys. Rev. D66, 056006 (2002) C Macesanu, C D McMullen and S Nandi, Phys. Rev. D66, 015009 (2002) G Bhattacharyya, P Dey, A Kundu and A Raychaudhuri, Phys. Lett. B628, 141 (2005) M Battaglia, A Datta, A De Roeck, K Kong and K T Matchev, J. High Energy Phys. 0507, 033 (2005) B Bhattacherjee and A Kundu, Phys. Lett. B627, 137 (2005) B Bhattacherjee and A Kundu, Phys. Lett. B653, 300 (2007) D Hooper and S Profumo, Phys. Rep. 453, 29 (2007) B Bhattacherjee, A Kundu, S K Rai and S Raychaudhuri, Phys. Rev. D78, 115005 (2008) P Konar, K Kong, K T Matchev and M Perelstein, New J. Phys. 11 105004 (2009) S Matsumoto, J Sato, M Senami and M Yamanaka, Phys. Rev. D80, 056006 (2009) G Bhattacharyya, A Datta, S K Majee and A Raychaudhuri, Nucl. Phys. B821, 48 (2009) P Bandyopadhyay, B Bhattacherjee and A Datta, J. High Energy Phys. 1003, 048 (2010) B Bhattacherjee, A Kundu, S K Rai and S Raychaudhuri, Phys. Rev. D81, 035021 (2010) D Choudhury, A Datta and K Ghosh, J. High Energy Phys. 1008, 051 (2010) B Bhattacherjee and K Ghosh, Phys. Rev. D83, 034003 (2011) A Datta, A Datta and S Poddar, Phys. Lett. B712, 219 (2012) A Datta, U K Dey, A Shaw and A Raychaudhuri, e-Print: arXiv:1205.4334 [hep–ph] S Chang, K Y Lee, S Y Shim and J Song, e-Print: arXiv:1207.6876 [hep–ph]

  14. H Novales-Sánchez and J J Toscano, Phys. Rev. D82, 116012 (2010)

    ADS  Google Scholar 

  15. H Novales-Sánchez and J J Toscano, Phys. Rev. D84, 076010 (2011), arXiv:1105.2765 [hep-ph]

    ADS  Google Scholar 

  16. J Papavassiliou and A Santamaria, Phys. Rev. D63, 016002 (2000)

    ADS  Google Scholar 

  17. A Flores-Tlalpa, J Montaño, H Novales-Sánchez, F Ramírez-Zavaleta and J J Toscano, Phys. Rev. D83, 016011 (2011)

    ADS  Google Scholar 

  18. A Mück, A Pilaftsis and R Rückl, Phys. Rev. D65, 085037 (2002)

    ADS  Google Scholar 

  19. D Hooper and S Profumo, Phys. Rep. 453, 29 (2007)

    Article  ADS  Google Scholar 

  20. K R Dienes, E Dudas and T Gherghetta, Nucl. Phys. B537, 47 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  21. Some phenomenological implications of having gauge parameters confined to the 3-brane are studied in [8].

  22. K Fujikawa, Phys. Rev. D7, 393 (1973). See also, C G Honorato and J J Toscano, Pramana 73, 1023 (2009) and references therein

  23. C Becchi, A Rouet and R Stora, Commun. Math. Phys. 42, 127 (1975); Ann. Phys. (N.Y.) 98, 287 (1976) I V Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, FIAN (P N Lebedev Physical Institute of the USSR Academy of Science), Report No. 39, 1975

  24. For a review, see J Gomis, J Paris and S Samuel, Phys. Rep. 259, 1 (1995)

Download references

Acknowledgements

The authors acknowledge financial support from CONACYT and SNI (México). JJT also acknowledges support from VIEP-BUAP under grant DES-EXC-2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J TOSCANO.

Appendices

Appendix A. The boson masses

The mass term for the gauge fields is given by

$$ \begin{array}{rll} {\cal L}^{\rm gauge}_{\rm mass}&=&\sum\limits_{n=0}\left\{\left[\frac{1}{2}\left(\frac{n}{R} \right)^2+ \frac{g^2v^2}{8}\right]\left(W^{(n)1}_\mu W^{(n)1\mu}+W^{(n)2}_\mu W^{(n)2\mu} \right)\vphantom{\left(\begin{array}{ccc} W^{(n)3\mu} \\ \, \\ B^{(n)\mu} \end{array}\right)}\right.\\ &&\left.\;\;\;\quad +\left(W^{(n)3}_\mu,B^{(n)}_\mu\right)M^{(n)} \left(\begin{array}{ccc} W^{(n)3\mu} \\ \, \\ B^{(n)\mu} \end{array}\right) \right\}, \end{array} $$
(A.1)

where

$$ M^{(n)}=\frac{1}{2} \left( \frac{n}{R} \right)^2I+M^{(0)} , $$
(A.2)

with I representing the 2 × 2 identity matrix and

$$ M^{(0)}=\frac{v^2}{8}\left(\begin{array}{ccc} \, \, g^2 & -gg' \\ \, \\ -gg' & \, \, g'^2 \end{array}\right). $$
(A.3)

The M (n) matrix is diagonalized by the well-known orthogonal matrix

$$ R=\left(\begin{array}{ccc} \, \, \, c_W & s_W \\ \, \\ -s_W & c_W \end{array}\right), $$
(A.4)

where s W and c W stand for the sine and cosine of the weak angle, given by tanθ W  = g′/g. The mass eigenstate fields and their corresponding masses are given by

$$ W^{(n)+}_\mu =\frac{1}{\sqrt{2}}\left(W^{(n)1}_\mu-iW^{(n)2}_\mu \right), \quad n=0,1, ... , $$
(A.5)
$$ W^{(n)-}_\mu =\frac{1}{\sqrt{2}}\left(W^{(n)1}_\mu+iW^{(n)2}_\mu \right), \quad n=0,1, ... , $$
(A.6)
$$ m^2_{W^{(n)}}=\left(\frac{n}{R}\right)^2+m^2_{W^{(0)}}, \quad n=0,1, ... , $$
(A.7)
$$ Z^{(n)}_\mu =c_W W^{(n)3}_\mu -s_WB^{(n)}_\mu , \quad n=0,1, ... , $$
(A.8)
$$ A^{(n)}_\mu =s_W W^{(n)3}_\mu +c_WB^{(n)}_\mu , \quad n=0,1, ... , $$
(A.9)
$$ m^2_{Z^{(n)}}= \left(\frac{n}{R} \right)^2+m^2_{Z^{(0)}}, \quad n=0,1, ... , $$
(A.10)
$$ m^2_{\gamma^{(n)}}=\left(\frac{n}{R} \right)^2, \quad n=0,1, ... , $$
(A.11)

where \(m_{W^{(0)}}\) and \(m_{Z^{(0)}}\) are the SM masses for the W and Z gauge bosons, respectively.

Concerning the mass spectrum of the scalar fields, the up components of the Higgs doublets Φ(n), denoted by φ (n, mix with the charged fields \(W^{(n)\pm}_5\equiv \frac{1}{\sqrt{2}}\big(W^{(n)1}_5\mp iW^{(n)2}_5\big)\) as follows:

$$ \begin{array}{rll} {\cal L}^{\rm cs}_{\rm mass}&=&-(\phi^{(n)-},W^{(n)-}_5)\left(\begin{array}{ccc} \, \, \, \left({n}/{R}\right)^2 & im_{W^{(0)}}\!\left({n}/{R}\right)\\ \, \, \\ -im_{W^{(0)}}\!\left({n}/{R}\right)& m^2_{W^{(0)}} \end{array}\right) \left(\begin{array}{ccc} \phi^{(n)+} \\ \, \, \\ W^{(n)+}_5 \end{array}\right) \nonumber \\[6pt] \, \nonumber \\ &=&-m^2_{W^{(n)}}H^{(n)-}H^{(n)+}, \quad n=1,2,..., \end{array} $$
(A.12)

where the physical fields H (n and the pseudo-Goldstone bosons \(G^\pm_{W^{(n)}}\) are related to the original gauge eigenstates through the following unitary transformation:

$$ \left(\begin{array}{ccc} H^{(n)+} \\ \, \\ G^+_{W^{(n)}} \end{array}\right)=\left(\begin{array}{ccc} c_\alpha & \, \, \, is_\alpha\\ \, \, \\ s_\alpha & -ic_\alpha \end{array}\right)\left(\begin{array}{ccc} \phi^{(n)+} \\ \, \\ W^{(n)+}_5 \end{array}\right), $$
(A.13)

with the angle α given by

$$ \tan\alpha=\frac{m_{W^{(0)}}}{\left({n}/{R}\right)}. $$
(A.14)

The pseudo-Goldstone bosons associated with the standard gauge fields \(W^{(0)\pm}_\mu\) and \(Z^{(0)}_\mu\) are, respectively, the up component of Φ(0) and the imaginary part of the down component of Φ(0):

$$ \Phi^{(0)}=\left(\begin{array}{ccc} G^+_{W^{(0)}} \\ \, \, \\ \frac{v+H^{(0)}+iG_{Z^{(0)}}}{\sqrt{2}} \end{array}\right), $$
(A.15)

where H (0) is the SM Higgs boson. On the other hand, the mass terms for the neutral fields \(W^{(n)3}_5\), \(B^{(n)}_5\), H (n), and \(\phi^{(n)}_I\), the latter two fields being the real and imaginary parts of the down component of the Φ(n) doublet, can be written as

$$ \begin{array}{rll} {\cal L}^{\rm ns}_{\rm mass}&=&-\frac{1}{2}m^2_{H^{(n)}}H^{(n)}H^{(n)} \nonumber \\&& -\frac{1}{2}\left(\phi^{(n)}_{\rm I},\hat{W}^{(n)3}_5\right)\nonumber \\ &&\times \left(\begin{array}{ccc} \left({n}/{R}\right)^2 & -m_{Z^{(0)}}\!\left({n}/{R}\right)\\ \, \, \\ -m_{Z^{(0)}}\!\left({n}/{R}\right) & m^2_{Z^{(0)}} \end{array}\right)\left(\begin{array}{ccc} \phi^{(n)}_{\rm I} \\ \, \\ \hat{W}^{(n)3}_5 \end{array}\right),\end{array} $$
(A.16)

where we have carried out the following rotation:

$$ \left(\begin{array}{ccc} W^{(n)3}_5 \\ \, \\ B^{(n)}_5 \end{array}\right)=\left(\begin{array}{ccc} \, \, \, c_W & s_W\\ \, \, \\ -s_W & c_W \end{array}\right)\left(\begin{array}{ccc} \hat{W}^{(n)3}_5 \\ \, \\ G_{A^{(n)}} \end{array}\right). $$
(A.17)

In the above expression, \(G_{A^{(n)}}\) is the pseudo-Goldstone boson associated with the gauge boson \(A^{(n)}_\mu\). In addition, the masses of the KK excitations of H (0) are given by

$$ m^2_{H^{(n)}}=\left(\frac{n}{R} \right)^2+m^2_{H^{(0)}}, $$
(A.18)

where \(m_{H^{(0)}}\) is the SM Higgs mass. The above mass matrix can be diagonalized through the following orthogonal rotation:

$$ \left(\begin{array}{ccc} \phi^{(n)}_{\rm I} \\ \, \\ \hat{W}^{(n)3}_5 \end{array}\right)=\left(\begin{array}{ccc} \, \, \, c_\beta & s_\beta \\ \, \, \\ -s_\beta & c_\beta \end{array}\right)\left(\begin{array}{ccc} A^{(n)} \\ \, \\ G_{Z^{(n)}} \end{array}\right), $$
(A.19)

where \(G_{Z^{(n)}}\) is the pseudo-Goldstone boson associated with the gauge KK mode \(Z^{(n)}_\mu\) and A (n) represents a physical pseudoscalar field with mass given by \(m_{A^{(n)}}=m_{Z^{(n)}}\). In addition,

$$ \tan \beta=\frac{m_{Z^{(0)}}}{\left({n}/{R}\right)}. $$
(A.20)

Notice that

$$ \frac{\tan\alpha}{\tan\beta}=c_W. $$
(A.21)

Appendix B. Definitions in the Currents sector

The covariant objects appearing in eq. (76) are given by

$$ \begin{array}{rll} (D_\mu F)^{(0)}_{\rm L}&=&D^{(0)}_\mu F^{(0)}_{\rm L}\\ &&-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_\mu +ig\frac{\sigma^i}{2}W^{(n)i}_\mu +ig'\frac{Y}{2}B^{(n)}_\mu \right)F^{(n)}_{\rm L}, \end{array} $$
(B.1)
$$ \begin{array}{rll} (D_\mu F)^{(n)}_{\rm L}&=&D^{(0)}_\mu F^{(n)}_{\rm L}-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_\mu+ig\frac{\sigma^i}{2}W^{(n)i}_\mu +ig'\frac{Y}{2}B^{(n)}_\mu \right)F^{(0)}_{\rm L} \\ && -\Delta^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_\mu+ig\frac{\sigma^i}{2}W^{(r)i}_\mu +ig'\frac{Y}{2}B^{(r)}_\mu \right)F^{(s)}_{\rm L}, \end{array} $$
(B.2)
$$ (D_\mu F)^{(n)}_{\rm R}=D^{(0)}_\mu F^{(n)}_{\rm R} -\Delta'^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_\mu+ig\frac{\sigma^i}{2}W^{(r)i}_\mu +ig'\frac{Y}{2}B^{(r)}_\mu \right)F^{(s)}_{\rm R}, $$
(B.3)
$$ (D_5F)^{(0)}_{\rm L}=\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_5+ig\frac{\sigma^i}{2}W^{(n)i}_5 +ig'\frac{Y}{2}B^{(n)}_5 \right)F^{(n)}_{\rm R}, $$
(B.4)
$$ (D_5F)^{(n)}_{\rm L}=\frac{n}{R}F^{(n)}_{\rm R} -\Delta'^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_5+ig\frac{\sigma^i}{2}W^{(r)i}_5 +ig'\frac{Y}{2}B^{(r)}_5 \right)F^{(s)}_{\rm R}, $$
(B.5)
$$ \begin{array}{rll} (D_5F)^{(n)}_{\rm R}&=&-\frac{n}{R}F^{(n)}_{\rm L}-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_5+ig\frac{\sigma^i}{2}W^{(n)i}_5 +ig'\frac{Y}{2}B^{(n)}_5 \right)F^{(0)}_{\rm L}\\ &&-\,\Delta'^{nrs}\left(ig_s\frac{\lambda^a}{2}G^{(r)a}_5+ig\frac{\sigma^i}{2}W^{(r)i}_5 +ig'\frac{Y}{2}B^{(r)}_5\right)F^{(s)}_{\rm L}, \end{array} $$
(B.6)

and

$$ (D_\mu \hat{f})^{(0)}_{\rm R}=D^{(0)}_\mu f^{(0)}_{\rm R}-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_\mu+ig'\frac{Y}{2}B^{(n)}_\mu \right)\hat{f}^{(n)}_{\rm R}, $$
(B.7)
$$ \begin{array}{rll} (D_\mu \hat{f})^{(n)}_{\rm R}&=&D^{(0)}_\mu \hat{f}^{(n)}_{\rm R}-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_\mu+ig'\frac{Y}{2}B^{(n)}_\mu \right)f^{(0)}_{\rm R} \\ &&-\,\Delta^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_\mu+ig'\frac{Y}{2}B^{(r)}_\mu \right)\hat{f}^{(s)}_{\rm R} , \end{array} $$
(B.8)
$$ (D_\mu \hat{f})^{(n)}_{\rm L}=D^{(0)}_\mu \hat{f}^{(n)}_{\rm L} -\Delta'^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_\mu+ig'\frac{Y}{2}B^{(r)}_\mu \right)\hat{f}^{(s)}_{\rm L} , $$
(B.9)
$$ (D_5\hat{f})^{(0)}_{\rm R}=\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_5+ig'\frac{Y}{2}B^{(n)}_5 \right){\kern-3pt} \hat{f}^{(n)}_{\rm L}, $$
(B.10)
$$ (D_5f)^{(n)}_{\rm R}=\frac{n}{R}\hat{f}^{(n)}_{\rm L}-\Delta'^{nrs}\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(r)a}_5+ig'\frac{Y}{2}B^{(r)}_5 \right){\kern-3pt} \hat{f}^{(s)}_{\rm L} , $$
(B.11)
$$ \begin{array}{rll} (D_5\hat{f})^{(n)}_{\rm L}&=&-\frac{n}{R}\hat{f}^{(n)}_{\rm R}-\left(ig_{\rm s}\frac{\lambda^a}{2}G^{(n)a}_5+ig'\frac{Y}{2}B^{(n)}_5 \right){\kern-3pt} f^{(0)}_\mathrm{R} \\ && -\,\Delta'^{nrs}\left(ig_s\frac{\lambda^a}{2}G^{(r)a}_5+ig'\frac{Y}{2}B^{(r)}_5\right){\kern-3pt} \hat{f}^{(s)}_\mathrm{R} . \end{array} $$
(B.12)

In the above expressions, an appropriate application of the covariant derivative is assumed. For example, \(D^{(0)}_\mu e^{(0)}_{\rm R}=(\partial_\mu -ig'B^{(0)}_\mu Y/2 )e^{(0)}_{\rm R}\), but \(D^{(0)}_\mu d^{(0)}_{\rm R}=(\partial_\mu-ig_sG^{(0)a}_\mu \lambda^a/2 -ig'B^{(0)}_\mu Y/2 )d^{(0)}_{\rm R}\).

Appendix C. The fermion masses

As commented in §2, the masses of the fermions emerge from both the Yukawa and the Currents sectors. The corresponding Lagrangian is given by

$$ \begin{array}{rll} -{\cal L}^{f}_{\rm mass}&=&\sum\limits_{a,b=1}^3\Big\{\left(\lambda_{eab}\bar{L}^{(0)}_{{\rm L}a}e^{(0)}_{{\rm R}b}+\lambda_{dab}\bar{Q}^{(0)}_{\mathrm{L}a}d^{(0)}_{\mathrm{R}b}\right){\kern-3pt} \Phi^{(0)}_0 \\ &&\;\qquad+\,\lambda_{uab}\bar{Q}^{(0)}_{{\rm L}a}u^{(0)}_{{\rm R}b}\tilde{\Phi}^{(0)}_0+\lambda_{eab}\left(\bar{L}^{(n)}_{{\rm L}a}\hat{e}^{(n)}_{{\rm R}b}+\bar{L}^{(n)}_{{\rm R}a}\hat{e}^{(n)}_{{\rm L}b} \right){\kern-3pt} \Phi^{(0)}_0 \\ &&\qquad\;+\,\lambda_{dab}\left(\bar{Q}^{(n)}_{{\rm L}a}\hat{d}^{(n)}_{{\rm R}b}+\bar{Q}^{(n)}_{{\rm R}a}\hat{d}^{(n)}_{{\rm L}b} \right){\kern-3pt} \Phi^{(0)}_0 \\ &&\qquad\;+\,\lambda_{uab}\left(\bar{Q}^{(n)}_{{\rm L}a}\hat{u}^{(n)}_{{\rm R}b}+\bar{Q}^{(n)}_{{\rm R}a}\hat{u}^{(n)}_{{\rm L}b} \right){\kern-3pt} \tilde{\Phi}^{(0)}_0\Big\}\\ &&+\sum_{a=1}^3\left\{\left(\frac{n}{R}\right)\bigg(\bar{L}^{(n)}_{a{\rm L}} L^{(n)}_{a{\rm R}}+\bar{\hat{e}}^{(n)}_{a{\rm R}}\hat{e}^{(n)}_{a{\rm L}}+\bar{Q}^{(n)}_{a{\rm L}}Q^{(n)}_{a{\rm R}}\right.\\ &&\qquad\quad\qquad\;\;\;+\left.\bar{\hat{d}}^{(n)}_{a{\rm R}}\hat{d}^{(n)}_{a{\rm L}} +\bar{\hat{u}}^{(n)}_{a{\rm R}}\hat{u}^{(n)}_{a{\rm L}}\bigg)\right\}\, +\, {\rm h.c.} \end{array} $$
(C.1)

In the flavour space, this Lagrangian can be written as follows:

$$ \begin{array}{rll} -{\cal L}^{f}_{\rm mass}&=&\bar{E}^{(0)}_{\rm L}\Lambda_e E^{(0)}_{\rm R}+\bar{E}^{(n)}_{\rm L}\Lambda_e \hat{E}^{(n)}_{\rm R}+\bar{E}^{(n)}_{\rm R}\Lambda_e \hat{E}^{(n)}_{\rm L}\\ &&+\left(\frac{n}{R}\right)\left(\bar{E}^{(n)}_\mathrm{L}E^{(n)}_{\rm R} +\bar{\hat{E}}^{(n)}_{\rm R}\hat{E}^{(n)}_{\rm L}+\bar{N}^{(n)}_{\rm L}N^{(n)}_{\rm R} \right) \\ &&+\,\bar{D}^{(0)}_{\rm L}\Lambda_\mathrm{d} D^{(0)}_{\rm R}+\bar{D}^{(n)}_{\rm L}\Lambda_\mathrm{d} \hat{D}^{(n)}_{\rm R}+\bar{D}^{(n)}_{\rm R}\Lambda_\mathrm{d} \hat{D}^{(n)}_{\rm L} \\ &&+\left(\frac{n}{R}\right)\left(\bar{D}^{(n)}_{\rm L}D^{(n)}_{\rm R} +\bar{\hat{D}}^{(n)}_{\rm R}\hat{D}^{(n)}_{\rm L} \right) \\ &&+\,\bar{U}^{(0)}_{\rm L}\Lambda_{\rm u} U^{(0)}_{\rm R}+\bar{U}^{(n)}_{\rm L}\Lambda_\mathrm{u} \hat{U}^{(n)}_{\rm R}+\bar{U}^{(n)}_{\rm R}\Lambda_\mathrm{u} \hat{U}^{(n)}_{\rm L} \\ &&+\left(\frac{n}{R}\right)\left(\bar{U}^{(n)}_{\rm L}U^{(n)}_{\rm R} +\bar{\hat{U}}^{(n)}_{\rm R}\hat{U}^{(n)}_{\rm L} \right)+{\rm h.c.}, \end{array} $$
(C.2)

where \(\Lambda_{e,d,u}=({v}/{\sqrt{2}})\lambda_{e,d,u}\) are matrices in the flavour space. Additionally,

$$ \begin{array}{rll} E^{(n)}_{\rm L,R}&=&\left(\begin{array}{ccc} e^{(n)} \\ \, \, \\ \mu ^{(n)} \\ \, \\ \tau^{(n)} \end{array}\right)_{\rm L,R} , \quad n=0,1,... , \\ N^{(n)}_{\rm L,R}&=&\left(\begin{array}{ccc} \nu_e^{(n)} \\ \, \, \\ \nu_\mu ^{(n)} \\ \, \\ \nu_\tau^{(n)} \end{array}\right)_{\rm L,R} , \quad n=1,2,... , \end{array} $$
(C.3)
$$ D^{(n)}_{\rm L,R}=\left(\begin{array}{ccc} d^{(n)} \\ \, \, \\ s ^{(n)} \\ \, \\ b^{(n)} \end{array}\right)_{\rm L,R} , \qquad U^{(n)}_{\rm L,R}=\left(\begin{array}{ccc} u^{(n)} \\ \, \, \\ c ^{(n)} \\ \, \\ t^{(n)} \end{array}\right)_{\rm L,R} \, , \qquad n=0, 1,... , $$
(C.4)
$$ \hat{E}^{(n)}_{\rm L,R}=\left(\begin{array}{ccc} \hat{e}^{(n)} \\ \, \, \\ \hat{\mu}^{(n)} \\ \, \\ \hat{\tau}^{(n)} \end{array}\right)_{\rm L,R} , \qquad n= 1,2,... , $$
(C.5)
$$ \hat{D}^{(n)}_{\rm L,R}=\left(\begin{array}{ccc} \hat{d}^{(n)} \\ \, \, \\ \hat{s} ^{(n)} \\ \, \\ \hat{b}^{(n)} \end{array}\right)_{\rm L,R} , \qquad \hat{U}^{(n)}_{\rm L,R}=\left(\begin{array}{ccc} \hat{u}^{(n)} \\ \, \, \\ \hat{c} ^{(n)} \\ \, \\ \hat{t}^{(n)} \end{array}\right)_{\rm L,R} \, , \, \, \, \, n= 1,2, ... . $$
(C.6)

The mass eigenstates of the zero modes are determined by means of the standard unitary transformations

$$ N'^{(0)}_{\rm L}=V^e_{\rm L}N^{(0)}_{\rm L} , $$
(C.7)
$$ E'^{(0)}_{\rm L,R}=V^e_{\rm L,R}E^{(0)}_{\rm L,R} , $$
(C.8)
$$ D'^{(0)}_{\rm L,R}=V^d_{\rm L,R}D^{(0)}_{\rm L,R} , $$
(C.9)
$$ U'^{(0)}_{\rm L,R}=V^u_{\rm L,R}U^{(0)}_{\rm L,R} . $$
(C.10)

Notice that, as it is usual, the left-handed neutrinos are rotated in the same way as the left-handed charged leptons. Regarding the excited KK modes, we impose the following transformations:

$$ E'^{(n)}_{\rm L,R}=V^e_{\rm L}E^{(n)}_{\rm L,R} , \, \, \, \, \hat{E}'^{(n)}_{\rm L,R}=V^e_{\rm R}\hat{E}^{(n)}_{\rm L,R} , $$
(C.11)
$$ D'^{(n)}_{\rm L,R}=V^d_{\rm L}D^{(n)}_{\rm L,R} , \, \, \, \, \hat{D}'^{(n)}_{\rm L,R}=V^d_{\rm R}\hat{D}^{(n)}_{\rm L,R} , $$
(C.12)
$$ U'^{(n)}_{\rm L,R}=V^u_{\rm L}U^{(n)}_{\rm L,R} , \, \, \, \, \hat{U}'^{(n)}_{\rm L,R}=V^u_{\rm R}\hat{U}^{(n)}_{\rm L,R} . $$
(C.13)

We also demand that the neutrino excitations transform as the corresponding charged lepton excitations:

$$ \label{eq1} N'^{(n)}_{\rm L,R}=V^e_{\rm L}N^{(n)}_{\rm L,R} \,. $$
(C.14)

Once carried out these transformations, one obtains

$$ -{\cal L}^{f}_{\rm mass}={\cal L}^e_{\rm mass}+{\cal L}^d_{\rm mass}+{\cal L}^u_{\rm mass} , $$
(C.15)

where

$$ \begin{array}{rll} {\cal L}^e_{\rm mass}&=&\bar{E}'^{(0)}_{\rm L}M^{(0)}_e E'^{(0)}_{\rm R}+\left(\frac{n}{R}\right)\bar{\nu}^{(n)}_{\rm L}\nu^{(n)}_{\rm R} +\sum\limits_{a=1}^3\,m_{e^{(n)}_a}\, \left(\bar{e}'^{(n)}_{a{\rm L}}\, \, \, \bar{\hat{e}}'^{(n)}_{a{\rm L}} \right)\\ &&\times\left(\begin{array}{ccc} \cos\alpha^{(n)}_{e_a} & \sin\alpha^{(n)}_{e_a} \\ \, \, \\ \sin\alpha^{(n)}_{e_a} & \cos\alpha^{(n)}_{e_a} \end{array}\right) \left(\begin{array}{ccc} e'^{(n)}_{a{\rm R}} \\ \, \, \\ \hat{e}'^{(n)}_{a{\rm R}} \end{array}\right)+ {\rm h.c.} \end{array} $$
(C.16)
$$ \begin{array}{rll} {\cal L}^d_{\rm mass}&=&\bar{D}'^{(0)}_{\rm L}M^{(0)}_{\rm d} D'^{(0)}_{\rm R}+\sum_{a=1}^3\,m_{d^{(n)}_a}\,\left(\bar{d}'^{(n)}_{a{\rm L}}\, \, \, \bar{\hat{d}}'^{(n)}_{a{\rm L}} \right) \\ &&\times\left(\begin{array}{ccc} \cos\alpha^{(n)}_{d_a} & \sin\alpha^{(n)}_{d_a} \\ \, \, \\ \sin\alpha^{(n)}_{d_a} & \cos\alpha^{(n)}_{d_a} \end{array}\right) \left(\begin{array}{ccc} d'^{(n)}_{a{\rm R}} \\ \, \, \\ \hat{d}'^{(n)}_{a{\rm R}} \end{array}\right) + {\rm h.c.} \end{array} $$
(C.17)
$$ \begin{array}{rll} {\cal L}^u_{\rm mass}&=&\bar{U}'^{(0)}_{\rm L}M^{(0)}_{\rm u} U'^{(0)}_{\rm R}+\sum\limits_{a=1}^3\,m_{u^{(n)}_a}\,\left(\bar{u}'^{(n)}_{a{\rm L}}\, \, \, \bar{\hat{u}}'^{(n)}_{a{\rm L}} \right) \\ &&\times\left(\begin{array}{ccc} \cos\alpha^{(n)}_{u_a} & \sin\alpha^{(n)}_{u_a} \\ \, \, \\ \sin\alpha^{(n)}_{u_a} & \cos\alpha^{(n)}_{u_a} \end{array}\right) \left(\begin{array}{ccc} u'^{(n)}_{a{\rm R}} \\ \, \, \\ \hat{u}'^{(n)}_{a{\rm R}} \end{array}\right)+ \,{\rm h.c.} \end{array} $$
(C.18)

In the above expressions, \(M^{(0)}_{e}={\rm diag}(m_{e^{(0)}},m_{\mu^{(0)}}, m_{\tau^{(0)}})\), etc. In addition,

$$ \tan\alpha^{(n)}_{f_a}=\frac{m_{f^{(0)}_a}}{\left({n}/{R}\right)} , $$
(C.19)

where f a stands for a charged lepton or quark. The mass eigenstates associated with the KK modes, which we shall denote by \(\tilde{f}_a\) and \(\tilde{\hat{f}}_a\), are given by the following unitary transformations:

$$ \left(\begin{array}{ccc} f'^{(n)}_{a{\rm L}} \\ \, \, \\ \hat{f}'^{(n)}_{a{\rm L}}\\ \end{array}\right)=V_{\rm L}\left(\begin{array}{ccc} \tilde{f}^{(n)}_{a{\rm L}} \\ \, \, \\ \tilde{\hat{f}}^{(n)}_{a{\rm L}}\\ \end{array}\right), \, \, \, \, \, \left(\begin{array}{ccc} f'^{(n)}_{a{\rm R}} \\ \, \, \\ \hat{f}'^{(n)}_{a{\rm R}}\\ \end{array}\right)=V_\mathrm{R}\left(\begin{array}{ccc} \tilde{f}^{(n)}_{a{\rm R}} \\ \, \, \\ \tilde{\hat{f}}^{(n)}_{a{\rm R}}\\ \end{array}\right), $$
(C.20)

where

$$ \begin{array}{rll} V_{\rm L}&=&\left(\begin{array}{ccc} \cos\left({\alpha^{(n)}_{f_a}}/{2}\right) & \, \, \sin\left({\alpha^{(n)}_{f_a}}/{2}\right) \\ \, \, \\ \sin\left({\alpha^{(n)}_{f_a}}/{2}\right) & -\cos\left({\alpha^{(n)}_{f_a}}/{2}\right) \\ \end{array}\right), \\ V_{\rm R}&=&\left(\begin{array}{ccc} \cos\left({\alpha^{(n)}_{f_a}}/{2}\right) & -\sin\left({\alpha^{(n)}_{f_a}}/{2}\right) \\ \, \, \\ \sin\left({\alpha^{(n)}_{f_a}}/{2}\right) & \, \, \cos\left({\alpha^{(n)}_{f_a}}/{2}\right) \\ \end{array}\right). \end{array} $$
(C.21)

\(\tilde{f}_a\) and \(\tilde{\hat{f}}_a\) states are degenerate, with mass given by

$$ m_{f^{(n)}_a}=\sqrt{\left(\frac{n}{R}\right)^2+m^2_{f^{(0)}_a}} . $$
(C.22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

CORDERO-CID, A., GÓMEZ-BOCK, M., NOVALES-SÁNCHEZ, H. et al. The Standard Model with one universal extra dimension. Pramana - J Phys 80, 369–412 (2013). https://doi.org/10.1007/s12043-012-0501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0501-4

Keywords

PACS Nos

Navigation