Skip to main content
Log in

Charged-lepton flavour physics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This write-up on a talk at the 2011 Lepton–Photon symposium in Mumbai, India, summarizes recent results in the charged-lepton flavour sector. Searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation are reviewed here. Recent progress in τ-lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. S L Glashow, J Iliopoulos and L Maiani, Phys. Rev. D2, 1285 (1970)

    ADS  Google Scholar 

  2. LHCb Collaboration, 1112.1600 (2011)

  3. CMS Collaboration: Phys. Rev. Lett. 107, 191802 (2011)

    Article  ADS  Google Scholar 

  4. W J Marciano, T Mori and J M Roney, Annu. Rev. Nucl. Part. Sci. 58, 315 (2008)

    Article  ADS  Google Scholar 

  5. Heavy Flavor Averaging Group (2010), 1010.1589, http://www.slac.stanford.edu/xorg/hfag/tau/index.html

  6. G Danby, J-M Gaillard, K Goulianos, L M Lederman, N Mistry, M Schwartz and J Steinberger, Phys. Rev. Lett. 9, 36 (1962)

    Article  ADS  Google Scholar 

  7. G Feinberg, Phys. Rev. 110, 1482 (1958)

    Article  ADS  Google Scholar 

  8. MEGA Collaboration: M Ahmed et al, Phys. Rev. D65, 112002 (2002), hep-ex/0111030

    ADS  Google Scholar 

  9. Y Kuno and Y Okada, Rev. Mod. Phys. 73, 151 (2001), hep-ph/9909265

    Article  ADS  Google Scholar 

  10. M Raidal et al, Eur. Phys. J. C57, 13 (2008), 0801.1826

    Article  ADS  Google Scholar 

  11. R Barbier et al, Phys. Rep. 420, 1 (2005), hep-ph/0406039

    Article  ADS  Google Scholar 

  12. A Baldini, T Mori et al, The MEG experiment: Search for the μ decay at PSI, http://meg.psi.ch/docs

  13. MEG Collaboration: J Adam et al, Nucl. Phys. B834, 1 (2010), 0908.2594

    Article  ADS  Google Scholar 

  14. MEG Collaboration: R Sawada, PoS ICHEP2010, 263 (2010)

    Google Scholar 

  15. MEG Collaboration, Phys. Rev. Lett. 107, 171801 (2011), 1107.5547

    Article  Google Scholar 

  16. L Calibbi, A Faccia, A Masiero and S K Vempati, Phys. Rev. D74, 116002 (2006), hep-ph/0605139

    ADS  Google Scholar 

  17. A Masiero, S K Vempati and O Vives, Nucl. Phys. B649, 189 (2003), hep-ph/0209303

    Article  ADS  Google Scholar 

  18. R Kitano, M Koike, S Komine and Y Okada, Phys. Lett. B575, 300 (2003), hep-ph/0308021

    ADS  Google Scholar 

  19. V Cirigliano, R Kitano, Y Okada and P Tuzon, Phys. Rev. D80, 013002 (2009), 0904.0957

    ADS  Google Scholar 

  20. A Czarnecki, W J Marciano and K Melnikov, AIP Conf. Proc. 435, 409 (1998), hep-ph/9801218

    ADS  Google Scholar 

  21. R Kitano, M Koike and Y Okada, Phys. Rev. D66, 096002 (2002), hep-ph/0203110

    ADS  Google Scholar 

  22. SINDRUM II Collaboration: W H Bertl et al, Eur. Phys. J. C47, 337 (2006)

    Article  ADS  Google Scholar 

  23. See, e.g., R Bernstein, Pittsburgh Seminar, Feb 2011, http://mu2e.fnal.gov

  24. COMET Collaboration, KEK Report 2009-10 (TDR)

  25. Project-X, FNAL, http://projectx.fnal.gov/

  26. J Pasternak et al, Proc. Int. Particle Accel. Conf. IPAC10 (Kyoto, Japan, 2010) A Sato et al, Proc. EPAC2006 (Edinburgh, 2006) p. 2508

  27. BABAR Collaboration, Phys. Rev. Lett. 104, 021802 (2010), 0908.2381

    Article  ADS  Google Scholar 

  28. Y Miyazaki et al, Phys. Lett. B699, 251 (2011), 1101.0755

    ADS  Google Scholar 

  29. SuperB Collaboration, 0709.0451 (2007)

  30. Belle II Collaboration (2010), Long author list - awaiting processing, 1011.0352

  31. K Hayasaka, J. Phys.: Conf. Series 171, 1, 012079 (2009)

    Article  Google Scholar 

  32. T2K Collaboration, Phys. Rev. Lett. 107, 041801 (2011), 1106.2822

    Article  Google Scholar 

  33. J Hisano, M Nagai, P Paradisi and Y Shimizu, J. High Energy Phys. 0912, 030 (2009), 0904.2080

    Article  ADS  Google Scholar 

  34. S K Lamoreaux and R Golub, J. Phys. G36, 104002 (2009)

    ADS  Google Scholar 

  35. M Pospelov and A Ritz, Ann. Phys. 318, 119 (2005), hep-ph/0504231

    Article  ADS  MATH  Google Scholar 

  36. K Kirch, Talk at PANIC 2011 (MIT-Cambridge, USA)

  37. G Zsigmond, Talk at EPS-HEP 2011 (Grenoble, France)

  38. C A Baker et al, Phys. Rev. Lett. 97, 131801 (2006), hep-ex/0602020

    Article  ADS  Google Scholar 

  39. Storage Ring EDM Collaboration, http://www.bnl.gov/edm/

  40. Y Semertzidis, Talk at Patras-Axion Workshop 2011 (Mykonos, Greece)

  41. B C Regan, E D Commins, C J Schmidt and D DeMille, Phys. Rev. Lett. 88, 071805 (2002)

    Article  ADS  Google Scholar 

  42. J J Hudson et al, Nature 473, 493 (2011)

    Article  ADS  Google Scholar 

  43. L I Schiff, Phys. Rev. 132, 2194 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  44. J J Hudson, B E Sauer, M R Tarbutt and E A Hinds, Phys. Rev. Lett. 89, 023003 (2002), hep-ex/0202014

    Article  ADS  Google Scholar 

  45. ALEPH Collaboration, Phys. Rep. 421, 191 (2005), hep-ex/0506072

    Article  ADS  Google Scholar 

  46. Particle Data Group: K Nakamura et al, J. Phys. G37, 075021 (2010)

    ADS  Google Scholar 

  47. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak and Heavy Flavour Group, Phys. Rep. 427, 257 (2006), hep-ex/0509008

    ADS  Google Scholar 

  48. S Weinberg, Phys. Rev. 112, 1375 (1958)

    Article  ADS  MATH  Google Scholar 

  49. A Pich, Phys. Lett. B196, 561 (1987)

    ADS  Google Scholar 

  50. S Nussinov and A Soffer, Phys. Rev. D78, 033006 (2008), 0806.3922

    ADS  Google Scholar 

  51. BABAR Collaboration, Phys. Rev. D83, 032002 (2011), 1011.3917

    Google Scholar 

  52. I I Bigi and A I Sanda, Phys. Lett. B625, 47 (2005), hep-ph/0506037

    ADS  Google Scholar 

  53. Y Grossman and Y Nir, 1110.3790 (2011)

  54. J H Kuhn and E Mirkes, Phys. Lett. B398, 407 (1997), hep-ph/9609502

    ADS  Google Scholar 

  55. BABAR Collaboration, Phys. Rev. D83, 071103 (2011), 1011.5477

    Google Scholar 

  56. Belle Collaboration, Phys. Rev. Lett. 107, 131801 (2011), 1101.0349

    Article  ADS  Google Scholar 

  57. BABAR Collaboration, 1109.1527 (2011)

  58. M Davier, A Hoecker and A Zhang, Rev. Mod. Phys. 78, 1043 (2006), hep-ph/0507078

    Article  ADS  Google Scholar 

  59. ALEPH Collaboration, Z. Phys. C76, 15 (1997)

    Google Scholar 

  60. ALEPH Collaboration, Eur. Phys. J. C4, 409 (1998)

    Article  ADS  Google Scholar 

  61. OPAL Collaboration, Eur. Phys. J. C7, 571 (1999), hep-ex/9808019

    Article  ADS  Google Scholar 

  62. D Boito et al, 1112.4202 (2011)

  63. P A Baikov, K G Chetyrkin and J H Kuhn, Phys. Rev. Lett. 101, 012002 (2008), 0801.1821

    Article  ADS  Google Scholar 

  64. M Davier, S Descotes-Genon, A Hoecker, B Malaescu and Z Zhang, Eur. Phys. J. C56, 305 (2008), 0803.0979

    Article  ADS  Google Scholar 

  65. M Beneke and M Jamin, J. High Energy Phys. 0809, 044 (2008), 0806.3156

    Article  ADS  Google Scholar 

  66. A Menke, 0904.1796 (2009)

  67. I Caprini and J Fischer, Phys. Rev. D84, 054019 (2011), 1106.5336

    ADS  Google Scholar 

  68. T van Ritbergen, J A M Vermaseren and S A Larin, Phys. Lett. B400, 379 (1997), hep-ph/9701390

    ADS  Google Scholar 

  69. K G Chetyrkin, Bernd A Kniehl and M Steinhauser, Phys. Rev. Lett. 79, 2184 (1997), hep-ph/9706430

    Article  ADS  Google Scholar 

  70. K G Chetyrkin, B A Kniehl and M Steinhauser, Nucl. Phys. B510, 61 (1998), hep-ph/9708255

    ADS  Google Scholar 

  71. G Rodrigo, A Pich and A Santamaria, Phys. Lett. B424, 367 (1998), hep-ph/9707474

    ADS  Google Scholar 

  72. M Baak et al, 1107.0975 (2011)

  73. S Bethke, Eur. Phys. J. C64, 689 (2009), 0908.1135

    Article  ADS  Google Scholar 

  74. K G Chetyrkin and A Kwiatkowski, Z. Phys. C59, 525 (1993), hep-ph/9805232

    ADS  Google Scholar 

  75. Kim Maltman, Phys. Rev. D58, 093015 (1998), hep-ph/9804298

    ADS  Google Scholar 

  76. CKMfitter Group: V Niess, Talk at EPS 2011 (Grenoble, France), http://ckmfitter.in2p3.fr

  77. This discussion follows in large parts the Review [130]

  78. A Czarnecki and W J Marciano, Phys. Rev. D64, 013014 (2001), hep-ph/0102122

    ADS  Google Scholar 

  79. M Davier and W J Marciano, Annu. Rev. Nucl. Part. Sci. 54, 115 (2004)

    Article  ADS  Google Scholar 

  80. In spite of the breathtaking accuracy of the most recent electron g − 2 measurement by the Harvard group [80], giving \(a^{\rm exp}_e=(11\,596\,521\,807.3 \pm 2.8) \cdot 10^{-13}\), exploiting this measurement to search for new physics is limited by the knowledge of the electromagnetic fine structure constant, α. Inserting independent measurements of α from atom recoil analyses [81–84], effectively reduces the above accuracy by a factor of 20

  81. D Hanneke, S Fogwell and G Gabrielse, Phys. Rev. Lett. 100, 120801 (2008), 0801.1134

    Article  ADS  Google Scholar 

  82. P Cladé et al, Phys. Rev. Lett. 96, 033001 (2006)

    Article  ADS  Google Scholar 

  83. Malo Cadoret et al, Phys. Rev. Lett. 101, 230801 (2008), 0810.3152

    Article  ADS  Google Scholar 

  84. P Cladé et al, Phys. Rev. A74, 052109 (2006)

    ADS  Google Scholar 

  85. V Gerginov et al, Phys. Rev. A73, 032504 (2006)

    ADS  Google Scholar 

  86. J P Miller, E de Rafael and B L Roberts, Rep. Prog. Phys. 70, 795 (2007), hep-ph/0703049

    Article  ADS  Google Scholar 

  87. F Jegerlehner and A Nyffeler, Phys. Rep. 477, 1 (2009), 0902.3360

    Article  ADS  Google Scholar 

  88. Muon g-2: GWBennett et al, Phys. Rev. Lett. 89, 101804 (2002), Erratum, ibid. 89, 129903 (2002), hep-ex/0208001

  89. Muon g-2: G W Bennett et al, Phys. Rev. Lett. 92, 161802 (2004), hep-ex/0401008

    Article  ADS  Google Scholar 

  90. Muon G-2: G W Bennett et al, Phys. Rev. D73, 072003 (2006), hep-ex/0602035

    ADS  Google Scholar 

  91. CERN-Mainz-Daresbury: J Bailey et al, Nucl. Phys. B150, 1 (1979)

    Article  ADS  Google Scholar 

  92. Julian S Schwinger, Phys. Rev. 73, 416 (1948)

    Article  MATH  Google Scholar 

  93. T Kinoshita and M Nio, Phys. Rev. D73, 013003 (2006), hep-ph/0507249

    ADS  Google Scholar 

  94. T Aoyama, M Hayakawa, T Kinoshita and M Nio, Phys. Rev. Lett. 99, 110406 (2007), 0706.3496

    Article  ADS  Google Scholar 

  95. T Kinoshita and M Nio, Phys. Rev. D70, 113001 (2004), hep-ph/0402206

    ADS  Google Scholar 

  96. T Kinoshita and M Nio, Phys. Rev. D73, 053007 (2006), hep-ph/0512330

    ADS  Google Scholar 

  97. A L Kataev, hep-ph/0602098 (2006)

  98. M Passera, J. Phys. G31, R75 (2005), hep-ph/0411168

    ADS  Google Scholar 

  99. G Gabrielse, D Hanneke, T Kinoshita, M Nio and B C Odom, Phys. Rev. Lett. 97, 030802 (2006), Erratum, ibid. 99, 039902 (2007)

  100. R Jackiw and S Weinberg, Phys. Rev. D5, 2396 (1972)

    ADS  Google Scholar 

  101. A Czarnecki, W J Marciano and A Vainshtein, Phys. Rev. D67, 073006 (2003), Erratum, ibid. D73, 119901 (2006), hep-ph/0212229

  102. S Heinemeyer, D Stockinger and G Weiglein, Nucl. Phys. B699, 103 (2004), hep-ph/0405255

    Article  ADS  Google Scholar 

  103. T Gribouk and A Czarnecki, Phys. Rev. D72, 053016 (2005), hep-ph/0509205

    ADS  Google Scholar 

  104. A Czarnecki, B Krause and W J Marciano, Phys. Rev. Lett. 76, 3267 (1996), hep-ph/9512369

    Article  ADS  Google Scholar 

  105. A Czarnecki, B Krause and W J Marciano, Phys. Rev. D52, 2619 (1995), hep-ph/9506256

    ADS  Google Scholar 

  106. S Peris, M Perrottet and E de Rafael, Phys. Lett. B355, 523 (1995), hep-ph/9505405

    ADS  Google Scholar 

  107. T V Kukhto, E A Kuraev, Z K Silagadze and A Schiller, Nucl. Phys. B371, 567 (1992)

    Article  ADS  Google Scholar 

  108. G Degrassi and G F Giudice, Phys. Rev. D58, 053007 (1998), hep-ph/9803384

    ADS  Google Scholar 

  109. Xu Feng, Karl Jansen, Marcus Petschlies and Dru B Renner, 1103.4818 (2011)

  110. C Bouchiat and L Michel, Phys. Rev. 106, 170 (1957)

    Article  ADS  Google Scholar 

  111. M Gourdin and E De Rafael, Nucl. Phys. B10, 667 (1969)

    Article  ADS  Google Scholar 

  112. S J Brodsky and E De Rafael, Phys. Rev. 168, 1620 (1968)

    Article  ADS  Google Scholar 

  113. A B Arbuzov, E A Kuraev, N P Merenkov and L Trentadue, J. High Energy Phys. 9812, 009 (1998), hep-ph/9804430

    Article  ADS  Google Scholar 

  114. S Binner, J H Kuhn and K Melnikov, Phys. Lett. B459, 279 (1999), hep-ph/9902399

    ADS  Google Scholar 

  115. BABAR Collaboration, Phys. Rev. Lett. 103, 231801 (2009), 0908.3589

    Article  Google Scholar 

  116. M Davier, A Hoecker, B Malaescu and Z Zhang, Eur. Phys. J. C71, 1515 (2011), 1010.4180

    ADS  Google Scholar 

  117. KLOE Collaboration, Phys. Lett. B700, 102 (2011), 1006.5313

    ADS  Google Scholar 

  118. KLOE Collaboration, Phys. Lett. B670, 285 (2009), 0809.3950

    ADS  Google Scholar 

  119. KLOE Collaboration: G Venanzoni, Talk at EPS-HEP 2011 (Grenoble, France)

  120. BABAR Collaboration: V P Druzhinin, Talk at the 23rd International Symposium on Lepton–Photon Interactions at High Energy (LP07) (Daegu, Korea, 13–18 Aug 2007) published in Daegu 2007, Lepton and photon interactions at high energies 134, arXiv:0710.3455

  121. BABAR Collaboration, Phys. Rev. D71, 052001 (2005), hep-ex/0502025

    Google Scholar 

  122. R Alemany, M Davier and A Hoecker, Eur. Phys. J. C2, 123 (1998), hep-ph/9703220

    ADS  Google Scholar 

  123. M Davier et al, Eur. Phys. J. C66, 127 (2010), 0906.5443

    Article  ADS  Google Scholar 

  124. K Hagiwara, R Liao, A D Martin, D Nomura and T Teubner, J. Phys. G38, 085003 (2011), 1105.3149

    ADS  Google Scholar 

  125. B Krause, Phys. Lett. B390, 392 (1997), hep-ph/9607259

    ADS  Google Scholar 

  126. Some recent representative estimates of the hadronic light-by-light scattering contribution, a μ had,NLO[LBL], that followed after the sign correction of [135,136], are: (105 ± 26) · 10−11 [127], (110 ± 40) · 10−11 [126], (136 ± 25) · 10−11 [128]

  127. J Bijnens and J Prades, Mod. Phys. Lett. A22, 767 (2007), hep-ph/0702170

    ADS  Google Scholar 

  128. J Prades, E de Rafael and A Vainshtein, 0901.0306 (2009)

  129. K Melnikov and A Vainshtein, Phys. Rev. D70, 113006 (2004), hep-ph/0312226

    ADS  Google Scholar 

  130. E de Rafael, Phys. Lett. B322, 239 (1994), hep-ph/9311316

    ADS  Google Scholar 

  131. A Hoecker and W Marciano, The muon anomalous magnetic moment, in: Particle Data Group (K Nakamura et al), J. Phys. G37, 075021 (2010)

  132. M Pospelov, Phys. Rev. D80, 095002 (2009), 0811.1030

    ADS  Google Scholar 

  133. D Tucker-Smith and I Yavin, Phys. Rev. D83, 101702 (2011), 1011.4922

    ADS  Google Scholar 

  134. New g − 2 Collaboration, http://gm2.fnal.gov/public_docs/proposals/Proposal-APR5-Final.pdf

  135. V Vrba et al, Report KEK_J-PARC-PAC2009-06 See also, e.g., Naohito SAITO (KEK), Seminar at DESY 2011

  136. M Knecht and A Nyffeler, Phys. Rev. D65, 073034 (2002), hep-ph/0111058

    ADS  Google Scholar 

  137. M Knecht, A Nyffeler, M Perrottet and E de Rafael, Phys. Rev. Lett. 88, 071802 (2002), hep-ph/0111059

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Alessandro Baldini, Swagato Banerjee, Robert Bernstein, Michel Davier, Tim Gershon, Herve Hiu Fai Choi, Yoshitaka Kuno, Alberto Lusiani, Bogdan Malaescu, James Miller, Toshinori Mori, Steven Robertson, Karim Trabelsi, Graziano Venanzoni and Zhiqing Zhang for their help with the preparation of the talk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANDREAS HOECKER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HOECKER, A. Charged-lepton flavour physics . Pramana - J Phys 79, 1141–1167 (2012). https://doi.org/10.1007/s12043-012-0422-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0422-2

Keywords

PACS Nos

Navigation