Skip to main content

Advertisement

Log in

Femtosecond laser-fabricated microstructures in bulk poly(methylmethacrylate) and poly(dimethylsiloxane) at 800 nm towards lab-on-a-chip applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Laser direct writing technique is employed to fabricate microstructures, including gratings (buried and surface) and two-dimensional photonic crystal-like structures, in bulk poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) using ∼100 femtosecond (fs) pulses. The variation of structure size with different writing conditions (focussing, speed and energy) was investigated in detail. Diffraction efficiencies of the gratings were calculated and the changes in diffraction efficiency (DE) as a function of period, energy and scanning speed were evaluated. Highest diffraction efficiencies of 34% and 10%, for the first order, were obtained in PMMA and PDMS respectively. Heat treatment of these gratings demonstrated small improvement in the diffraction efficiency. Several applications resulting from these structures are discussed. Fs modification in PMMA and PDMS demonstrated emission when excited at a wavelength of 514 nm. We attempted to prepare buried waveguides in PMMA with higher refractive index at the core. We have successfully fabricated branched and curved structures in PMMA and PDMS finding impending applications in microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C B Schaffer, A Brodeur and E Mazur, Meas. Sci. Tech. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  2. R R Gattass and E Mazur, Nat. Phot. 2, 219 (2008)

    Article  Google Scholar 

  3. J Kruger and W Kautek, Adv. Poly. Sci. 168, 247 (2004)

    Google Scholar 

  4. D Homoelle, S Wielandy, A L Gaeta, N F Borrelli and C Smith, Opt. Lett. 24, 1311 (1999)

    Article  ADS  Google Scholar 

  5. Y Li, W Watanabe, K Yamada, T Shinagawa, K Itoh, J Nishii and Y Jiang, Appl. Phys. Lett. 80, 1508 (2002)

    Article  ADS  Google Scholar 

  6. J W Chan, T R Huser, S H Risbud, J S Hayden and D M Krol, Appl. Phys. Lett. 82, 2371 (2003)

    Article  ADS  Google Scholar 

  7. K Minoshima, A M Kowalevicz, I Hartl, E P Ippen and J G Fujimoto, Opt. Lett. 26, 1516 (2001)

    Article  ADS  Google Scholar 

  8. P J Scully, D Jones and D A Jaroszynski, J. Opt. A: Pure Appl. Opt. 5, S92 (2003)

    Article  ADS  Google Scholar 

  9. A Baum, P J Scully, M Basanta, C L P Thomas, P R Fielden, N J Goddard, W Perrie and P R Chalker, Opt. Lett. 32, 190 (2007)

    Article  ADS  Google Scholar 

  10. A Baum, P J Scully, W Perrie, D Jones, R Issac and D A Jaroszynski, Opt. Lett. 33, 651 (2008)

    Article  ADS  Google Scholar 

  11. A Baum, P J Scully, W Perrie, M Sharp, K G Watkins, D Jones, R Issac and D A Jaroszynski, Proc. of the 8th International Symposium on Laser Precision Microfabrication, 2007, pp. 1–5

  12. C Wochnowski, Y Cheng, K Meteva, K Sugioka, K Midorikawa and S Metev, J. Opt. A: Pure Appl. Opt. 7, 493 (2005)

    Article  ADS  Google Scholar 

  13. H Mochizuki, W Watanabe, R Ezoe, T Tamaki, Y Ozeki, K Itoh, M Kasuya, K Matsuda and S Hirono, Appl. Phys. Lett. 92, 091120 (2008)

    Article  ADS  Google Scholar 

  14. Z Nie, H Lee, H Yoo, Y Lee, Y Kim, K S Lim and M Lee, Appl. Phys. Lett. 94, 111912 (2009)

    Article  ADS  Google Scholar 

  15. S Sowa, W Watanabe, T Tamaki, J Nishii and K Itoh, Opt. Express 14, 291 (2006)

    Article  ADS  Google Scholar 

  16. D Day and M Gu, Opt. Express 13, 5939 (2005)

    Article  ADS  Google Scholar 

  17. A Zoubir, C Lopez, M Richardson and K Richardson, Opt. Lett. 29, 1840 (2004)

    Article  ADS  Google Scholar 

  18. S K Sia and G M Whitesides, Electrophoresis 24, 3563 (2003)

    Article  Google Scholar 

  19. A C Siegel, D A Bruzewicz, W B Weibel and G M Whitesides, Adv. Mater. 19, 727 (2007)

    Article  Google Scholar 

  20. S H Cho, W S Chang, K R Kim and J W Hong, Opt. Commun. 282, 1317 (2009)

    Article  ADS  Google Scholar 

  21. K L N Deepak, D Narayana Rao and S Venugopal Rao, Appl. Opt. 49, 2475 (2010)

    Article  Google Scholar 

  22. S Hirono, M Kasuya, K Matsuda, Y Ozeki, K Itoh, H Mochizuki and W Watanabe, Appl. Phys. Lett. 94, 241122 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Narayana Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deepak, K.L.N., Venugopal Rao, S. & Narayana Rao, D. Femtosecond laser-fabricated microstructures in bulk poly(methylmethacrylate) and poly(dimethylsiloxane) at 800 nm towards lab-on-a-chip applications. Pramana - J Phys 75, 1221–1232 (2010). https://doi.org/10.1007/s12043-010-0210-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0210-9

Keywords

Navigation