Skip to main content

Advertisement

Log in

Carnivorous Plants as a Source of Potent Bioactive Compound: Naphthoquinones

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Carnivorous plants are among the curiosities of nature being different from the normal plants in their mode of nutrition. These plants have fascinated several researchers for centuries. They are also characterized by synthesis of bioactive compounds which are used as a mechanism for self defense. These compounds possess a broad spectrum of biological activities such as antiparasitic, antibacterial, insecticidal, fungicidal, anti-inflammatory, antipyretic, antiproliferative activities. Although, several antimicrobial drugs have been introduced during the recent decades, the problems of microbial infections resistant to synthetic pesticides still exist which necessitate the introduction of novel antimicrobial agents with additional modes of actions than the currently available therapeutic agents. Naphthoquinones are one of the most studied bioactive compounds which have been reported to inhibit the growth of proliferative cells and microbes. Efforts have been made to induce the biosynthesis of naphthoquinone in different species of carnivorous plants. It has been demonstrated that the accumulation of naphthoquinones in carnivorous plants was increased by injecting chitin into the plant tissues. Also, their biosynthesis could be enhanced by the incorporation of elicitors in in vitro cultures of plants. In the present review, we discuss the applications of naphthoquinones and its biosynthesis in carnivorous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Banerjee S, Wang Z (2008) Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. J Cell Biochem 105:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against leishmaniasis with natural products. Parasite 6:3–8

    Article  CAS  PubMed  Google Scholar 

  • Akhtar Y, Isman MB, Lee CH, Lee SH, Lee HS (2012) Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Ind Crop Prod 37:536–541

    Article  CAS  Google Scholar 

  • Babula P, Mikelova R, Adamb V, Kizek R, Havel L, Sladky Z (2006) Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula. J Chromatogr B 842:28–35

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones – their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5(1):47–68

    Article  CAS  Google Scholar 

  • Banasiuk R, Kawiak A, Krolicka A (2012) In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. J Biotechnol Comput Biol Bionanotechnol 93(2):87–96

    CAS  Google Scholar 

  • Bonnet M, Coumans M, Hofinger M, Ramaut JL, Gaspar T (1984) High-performance gas chromatography of 1,4-naphthoquinones from Droseraceae. Chromatographia 18:621–622

    Article  CAS  Google Scholar 

  • Blehova A, Erdelsky K, Repcak M, Garcar J (1995) Production and accumulation of 7-methyljuglone in callus and organ culture Drosera spathulata. Biologia 50:397–401

    CAS  Google Scholar 

  • Bringmann G, Feineis D (2001) Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 52:2015–2022

    Article  CAS  PubMed  Google Scholar 

  • Burbidge A (1994) Secondary plant metabolites from tissue culture. In: Hunter CF (ed) In vitro cultivation of plant cells. Butterworth Heinemann, Oxford, pp. 131–151

    Google Scholar 

  • Budzianowski J (1995) Naphthoquinones from Drosera spathulata from in vitro cultures. Phytochemistry 40:1145–1148

    Article  CAS  Google Scholar 

  • Budzianowski J (1996) Naphthohydroquinone glucosides of Drosera rotundifolia and D. intermedia from in vitro cultures. Phytochemistry 42:1145–1147

    Article  CAS  Google Scholar 

  • Budzianowski J (2000) Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Med 66:667–669

    Article  CAS  PubMed  Google Scholar 

  • Cannon JR, Lojanopiwana V, Raston CL, Sinchai W, White AH (1980) The quinones of Nepenthes rafflesiana. The crystal structure of 2,5-dihydroxy-3-methoxy-7-methylnaphto-1,4-quinone (nepenthone E) and a synthesis of 2,5-dihyroxy-3-methoxy-7- methylnaphto-1,4-quinone (nepenthone C). J Chem 33:1073–1093

    CAS  Google Scholar 

  • Castro FA, Mariani D, Panek AD, Eleutherio EC, Pereira MD (2008) Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS ONE 3(12):e3999. doi:10.1371/journal.pone.0003999

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro PF, do Nascimento SB, Pinto AV, Pinto Mdo C, Lechuga GC, Santos DO (2012) New oxirane derivatives of naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorg Med Chem 20:4995–5000

  • Checker R, Sharma D, Sandur SK, Subrahmanyam G, Krishnan S, Poduval TB, Sainis KB (2010) Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols. J Cell Biochem 110:1082–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culham A, Gornall RJ (1994) The taxonomic significance of naphthoquinones in the Droseraceae. Biochem Syst Ecol 22:507–515

    Article  CAS  Google Scholar 

  • Crouch IJ, Finnie JF, van Staden J (1990) Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tissue Organ Cult 21(1):79–82

    Article  CAS  Google Scholar 

  • Didry N, Dubreuil L, Trotin F, Pinkas M (1998) Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. J Ethnopharmacol 60:91–96

    Article  CAS  PubMed  Google Scholar 

  • Durand R, Zenk MH (1971) Biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) via the acetate pathway in higher plants. Tetrahedron Lett 32:3009–3012

    Article  Google Scholar 

  • Egan PA, Kooy F (2012) Coproduction and ecological significance of naphthoquinones in carnivorous sundews (Drosera). Chem Biodivers 9:1033–1044

  • Egan PA, Kooy F (2013) Phytochemistry of the Carnivorous Sundew Genus Drosera (Droseraceae) –Future Perspectives and Ethnopharmacological Relevance. Chem Bio 10:1774–1790

    CAS  Google Scholar 

  • Eilenberg H, Zilberstein A (2008) Carnivorous pitcher plants: towards understanding the molecular basis of prey digestion. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, Isleworth, pp. 287–294

    Google Scholar 

  • Eilenberg H, Pnini-Cohen S, Rahamim Y, Sionov E, Segal E, Carmeli S, Zilberstein A (2010) Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 61:911–922

    Article  CAS  PubMed  Google Scholar 

  • Ellison AM, Gotelli NJ (2009) Energetics and evolution of carnivorous plants-Darwin’s ‘most wonderful plant in the world’. J Exp Bot 60:19–42

    Article  CAS  PubMed  Google Scholar 

  • Ellison M, Adamec L (2011) Ecophysiological traits of terrestrial and aquatic carnivorous plants: Are the costs and benefits the same? Oikos 120(11):1721–1731

    Article  Google Scholar 

  • Ferreira RA, Oliveira AB, Ribeiro MF, Tafuri WL, Vitor RW (2006) Toxoplasma gondii: in vitro and in vivo activities of the hydroxynaphthoquinone 2-hydroxy-3-(1′-propen-3-phenyl)-1,4-naphthoquinone alone or combined with sulfadiazine. Exp Parasitol 113(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RA, de Oliveira AB, Gualberto SA, Miguel del Corral JM, Fujiwara RT, Gazzinelli-Guimaraes PH (2012) New naphthoquinones and alkaloid with in vitro activity against Toxoplasma gondii RH and EGS strains. Exp Parasitol 132(4):450–457

    Article  CAS  PubMed  Google Scholar 

  • Fieser LF, Schimer JP, Archer S, Lorenz RR, Pfaffenbach PI (1967) Naphthoquinone antimalarials. XXIX. 2-Hydroxy-3-(cyclohexylalkyl)-1,4-naphthoquinones. J Med Chem 10(4):513–517

    Article  CAS  PubMed  Google Scholar 

  • Fukushimaa K, Nagai K, Hoshia Y, Masumotob S, Mikamib I, Takahashib Y, Oikeb H, Koborib M (2009) Drosera rotundifolia and Drosera tokaiensis suppress the activation of HMC-1 human mast cells. J Ethnopharm 125:90–96

    Article  Google Scholar 

  • Gallie DR, Chang SC (1997) Signal transduction in the carnivorous plant Sarracenia purpurea -regulation of secretory hydrolase expression during development and in response to resources. Plant Physiol 115(4):1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastinal L, Schlauer J (2006) Plumbagin content in Aldrovanda vesiculosa shoots. Carniv Plant Newslett 35:52–55

    Google Scholar 

  • Gilgenast E, Zuk L, Skrzypczak A, Krolicka A, Lojkowska L, Kaminski M (2008) Optimal conditions of ramentaceone and plumbagin separation and isolation from carnivorous plants extracts using normal phase–high performance liquid chromatography (NP-HPLC). Planta Med. doi:10.1055/s-0028-1084520

    Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost-benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-po or habitats. Am Nat 124(4):479–497

    Article  Google Scholar 

  • Givnish TJ (2015) New evidence on the origin of carnivorous plants. Proc Natl Acad Sci U S A 112(1):10–11

    Article  CAS  PubMed  Google Scholar 

  • Goncalves S, Quintas C, Gaspar M, Nogueira JMF, Romano A (2009) Antimicrobial activity of Drosophyllum lusitanicum leaf extract, an endemic Mediterranean insectivorous plant. Nat Prod Res 23:219–229

    Article  CAS  PubMed  Google Scholar 

  • Grevenstuk T, Gonçalves S, Nogueira JMF, Romano A (2008) Plumbagin recovery from field specimens of Drosophyllum lusitanicum (L.) Link. Phytochem Anal 19:229–235

    Article  CAS  PubMed  Google Scholar 

  • Grevenstuk T, Gonçalves S, Nogueira JMF, Bernardo-Gil MG, Romano A (2012) Recovery of high purity plumbagin from Drosera intermedia. Ind Crop Prod 35(1):257–260

    Article  CAS  Google Scholar 

  • Gwee PS, Khoo KS, Ong HC, Sit NW (2014) Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, from Nepenthes gracilis. Pharm Biol 52(12):1526–1531

    Article  CAS  PubMed  Google Scholar 

  • Hafeez BB, Zhong W, Mustafa A, Fischer JW, Witkowsky O, Verma AK (2013) Plumbagin inhibits prostate cancer development in TRAMP mice via targeting PKCε, Stat3 and neuroendocrine markers. Carcin 33:2586–2592

    Article  Google Scholar 

  • Hazra B, Sarkar R, Bhattacharyya S, Ghosh PK, Chel G, Dinda B (2002) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma in vivo and Leishmania donovani promastigotes in vitro. Phytother Res 16:133–137

    Article  CAS  PubMed  Google Scholar 

  • Hilton MG, Rhodes MJC (1993) Factors affecting the growth and hyoscyamine production during batch culture of transformed roots of Datura stramonium. Planta Med 59(4):340–344

    Article  CAS  PubMed  Google Scholar 

  • Hook ILI (2001) Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tiss Organ Cult 67(3):281–285

    Article  CAS  Google Scholar 

  • Hsu YL, Cho CY, Kuo PL (2006) Plumbagin (5-Hydroxy-2 -methyl- 1, 4- naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Theor 318:484–494

    Article  CAS  Google Scholar 

  • Inbaraj JJ, Chignell CF (2004) Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17:55–62

    Article  CAS  PubMed  Google Scholar 

  • Jayaram K, Prasad MNV (2005) Rapidly in vitro multiplied Drosera as reliable source for plumbagin bioprospection. Curr Sci 89:447–448

    Google Scholar 

  • Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, London

    Google Scholar 

  • Jurgens A, El-Sayed M, Suckling DM (2009) Do carnivorous plants use volatilesfor attracting prey insects. Funct Ecol 23:875–887

    Article  Google Scholar 

  • Kolodziejski D (2010) Porównanie efektywności wybranych technik ekstrakcji/ługowania metabolitów wtórnych z suchego materiału roślin owadożernych. Master Thesis, Gdańsk University of Technology

  • Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E (2008) Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb Tech 42:216–221

    Article  CAS  Google Scholar 

  • Krolicka A, Szpitter A, Maciag M, Biskup E, Gilgenast E, Romanik G, Kaminski M, Wegrzyn G, Lojkowska E (2009) Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Drosera aliciae. Biotechnol Appl Biochem 53(3):175–184

    CAS  PubMed  Google Scholar 

  • Krolicka A, Szpitter A, Stawujak K, Baranski R, Gwizdek-Wisniewska A, Skrzypczak A, Kaminski M, Lojkowska E (2010) Teratomas of Drosera capensis var. alba as a source of naphthoquinone: ramentaceone. Plant Cell Tiss Organ Cult 103: 285–292

  • Kawiak A, Wasilewska A, Stasilojc G, Stobiecki M, Bigda J, Lojkowska E (2006) Cytotoxic and apoptosis-inducing activity of ramentaceone - a naphthoquinone from Drosera sp. Planta Med 72:1008

    Google Scholar 

  • Kawiak A, Piosik J, Stasilojc G, Gwizdek-Wisniewska A, Marczak L, Stobiecki M, Lojkowska E (2007) Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II. Toxicol Appl Pharmacol 223(3):267–276

    Article  CAS  PubMed  Google Scholar 

  • Kawiak A, Krolicka A, Lojkowska E (2011) In vitro cultures of Drosera aliciae as a source of a cytotoxic naphthoquinone: ramentaceone. Biotechnol Lett 33:2309–2316

    Article  CAS  PubMed  Google Scholar 

  • Kawiak A, Zawacka-Pankau J, Lojkowska E (2012) Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod 75:747–751

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J (2004) Plantae J http://journal.plantae.sk/carnivorous/info/metabolity_drosera.htm

  • Kovacik J, Repcak M (2006) Naphthoquinone content of some sundews (Drosera L.). Carnivorous Plant Newslett 35(2):49

    Google Scholar 

  • Langer R, Pein I, Kobb B (1995) Glandular hairs in the genus Drosera (Droseraceae). Plant Syst Evol 195:163–172

    Article  Google Scholar 

  • Li J, Shen L, Lu F, Qin Y, Chen R, Li J, Li Y, Zhan H, He Y (2012) Plumbagin inhibits cell growth and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signaling pathway. Acta Pharmacol Sin 33:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Likhitwitayawuid K, Kaewamatawong R, Ruandgungsi N, Krungkrai J (1998) Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 64:237–241

  • Luckner R, Luckner M (1970) Naphthochinonderivate aus Drosera ramentacea Burch ex. Harv and Sond. Pharmazie 25:261–265

    CAS  PubMed  Google Scholar 

  • Luo P, Wong YF, Ge L, Zhang ZF, Liu Y (2010) Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-κB activation. J Pharmacol Exp Ther 335:735–742

    Article  CAS  PubMed  Google Scholar 

  • Marczak L, Kawiak A, Lojkowska E, Stobiecki M (2005) Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochem Anal 16:143–149

    Article  CAS  PubMed  Google Scholar 

  • McKallip RJ, Lombard C, Sun J, Ramakrishnan R (2010) Plumbagin-induced apoptosis in lymphocytes is mediated through increased reactive oxygen species production, upregulation of Fas, and activation of the caspase cascade. Toxicol Appl Pharmacol 247:41–52

    Article  CAS  PubMed  Google Scholar 

  • Miguel del Corral JM, Castro MA, Oliveira AB, Gualberto SA, Cuevas C, San Feliciano A (2006) New cytotoxic furoquinones obtained from terpenyl-1,4-naphthoquinones and 1,4-anthracenediones. Bioorg Med Chem 14(21):7231–7240

    Article  CAS  PubMed  Google Scholar 

  • Moran JA, Booth WE, Charles JK (1999) Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: Implications for prey capture. Ann Bot 83:521–528

    Article  Google Scholar 

  • Nahalka J, Nahalkova J, Gemeiner P, Blanarik P (1998) Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum Link. suspension cultures. Biotechnol Lett 20:841–845

    Article  CAS  Google Scholar 

  • Ohsaki Y, Shirakawa H, Miura A, Giriwono PE, Sato S (2010) Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/βphosphorylation. J Nutr Biochem 21:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Pintea AM (2007) Quinone biosynthesis. In: Socaciu C (ed) Food colorants, chemical and functional properties. CRC Press, Boca Raton, pp. 102–104

    Google Scholar 

  • Portes JA, Netto CD, da Silva AJ, Costa PR, Da Matta RA, dos Santos TA (2012) A new type of pterocarpanquinone that effects toxoplasma gondii tachyzoites in vitro. Vet Parasitol 186(3–4):261–269

    Article  CAS  Google Scholar 

  • Prescott B (1969) Potential antimalarial agents. Derivatives of 2-chloro-1,4-naphthoquinone. J Med Chem 12(1):181–182

    Article  CAS  PubMed  Google Scholar 

  • Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H (2010) Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett 32:721–724

    Article  CAS  PubMed  Google Scholar 

  • Raj G, Kurup R, Hussain AA, Baby S (2011) Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot 62:5429–5436

    Article  CAS  PubMed  Google Scholar 

  • Reichling J, Sauerwein M, Wink M (1995) Naphthoquinone production in in vitro cultures of Drosera communis. Drogenreport 8:26–27

    Google Scholar 

  • Rischer H, Hamm A, Bringman G (2002) Nepenthes insignis uses a C2-portion of the carbon skelet of L-alanine acquired via its carnivorous organs, to build up the alleochemical plumbagin. Phytochemistry 59:603–609

    Article  CAS  PubMed  Google Scholar 

  • Sandur SK, Ichikawa H, Sethi G (2006) Plumbagin (5-Hydroxy-2-methyl-1, 4-naphthoquinone) suppresses NF-κB activation and NF-κB-regulated gene products through modulation of p65 and IκB kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 281:17023–17033

    Article  CAS  PubMed  Google Scholar 

  • Schlauer J, Nerz J, Rischer H (2005) Carnivorous plant chemistry. Acta Bot Gallica 152:187–195

    Article  CAS  Google Scholar 

  • Son TG, Camandola S, Arumugam TV, Cutler RG, Telljohann RS, Mughal MR, Moore TA, Luo W, QS Y, Johnson DA, Johnson JA, Greig NH, Mattson MP (2010) Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 112:1316–1326

    Article  CAS  PubMed  Google Scholar 

  • Sugie S, Okamoto K, Rahman KMW, Tanaka T, Kawai K, Yamahara J, Mori H (1998) Inhibitory effects of plumbagin and juglone on azoxymethane-induced intestinal carcinogenesis in rats. Cancer Lett 127(1–2):177–183

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Shukla AK, Das M, Dubey VK (2012) Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 110(1):341–348

    Article  PubMed  Google Scholar 

  • Shieh JM, Chiang TA, Chang WT (2010) Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-κB and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol Cell Biochem 335:181–193

    Article  CAS  PubMed  Google Scholar 

  • Shin KS, Lee S, Cha B (2007) Antifungal activity of plumbagin purified from leaves of Nepenthes ventricosa x maxima against phytopathogenic fungi. Plant Pathol J 23(2):113–115

    Article  Google Scholar 

  • Taraszkiewicz A, Jafra S, Skrzypczak A, Kaminski M, Krolicka A (2012) Activity of secondary metabolites from in vitro culture of Drosera gigantea against the plant pathogenic bacteria Pseudomonas syringae pv. Syringae and P. syringae pv. Morsprunorum. J Plant Pathol 94:63–68

    CAS  Google Scholar 

  • Thaweesak J, Seiichi S, Hiroyuki T, Putalun W (2011) Elicitation effect on production of plumbagin in in vitro culture of Drosera indica L. J Med Plants 5:4949–4953

    Google Scholar 

  • Thompson RH (1949) Naturally occurring quinines: a synthesis of droserone. J Chem Soc 5:1277–1278

    Article  Google Scholar 

  • Tian J, Chen Y, Ma B, He J, Tong J, Wang Y (2014) Drosera peltata Smith var. lunata (Buch.-Ham.) C. B. Clarke as a feasible source of plumbagin: phytochemical analysis and antifungal activity assay. World J Microbiol Biotechnol 30:737–745

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga T, Takada N, Ueda M (2004) Mechanism of antifeedant activity of plumbagin, a compound concerning the chemical defence in carnivorous plants. Tetrahedron Lett 45:7115–7119

    Article  CAS  Google Scholar 

  • Verpoorte R, Van Der Hejden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479

    Article  CAS  Google Scholar 

  • Wang CC, Chiang YM, Sung SC (2008) Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett 259:82–98

    Article  CAS  PubMed  Google Scholar 

  • Wawrosch C, Markotai J, Steinberger B, Kopp B (1996) In vitro-Vermehrung von Sonnentau-Arten. Sci Pharma 64:709–717

    CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Genet Resour-C 3:90–100

    Article  CAS  Google Scholar 

  • Zhang SM, Coultas KA (2013) Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist 3:28–34

    Article  CAS  PubMed  Google Scholar 

  • Ziaratnia S, Kunert K, Lall N (2009) Elicitation of 7-methyljuglone in Drosera capensis. S Afr J Bot 75:97–103

    Article  CAS  Google Scholar 

  • Zaugg HE, Rapala RT, Leffler MT (1948) Naphthoquinone antimalarials. XIV 2-Hydroxy-3-aryl-1,4-naphthoquinones. J Am Chem Soc 70(10):3224–3228

Download references

Acknowledgments

S. P. Devi gratefully acknowledges the financial support provided by Research Grant No. BT/04/NE/ 2009 from the Department of Biotechnology, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumaria.

Additional information

Communicated by: Yuval Cohen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S.P., Kumaria, S., Rao, S.R. et al. Carnivorous Plants as a Source of Potent Bioactive Compound: Naphthoquinones. Tropical Plant Biol. 9, 267–279 (2016). https://doi.org/10.1007/s12042-016-9177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-016-9177-0

Keywords

Navigation