Skip to main content
Log in

Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Alfnes E, Breedveld G D, Kinzelbach W and Aagaard P 2004 Investigation of hydrogeologic processes in a dipping layer structure 2. Transport and biodegradation of organics ; J. Contam. Hydrol. 69 173–194.

    Article  Google Scholar 

  • Antonopoulos V Z 2006 Water movement and heat transfer simulations in a soil under Ryegrass; Biosys. Engg. 95 127–138.

    Article  Google Scholar 

  • Baedecker M J, Cozzarelli I M, Siegel D I, Bennett P C and Eganhouse R P 1993 Crude oil in a shallow sand and gravel aquifer – III. Biogeochemical reactions and mass balance modeling in anoxic groundwater; Appl. Geochem. 8 (6) 569–586.

    Article  Google Scholar 

  • Baedecker M J, Eganhouse R P, Bekins B A and Delin G N 2011 Loss of volatile hydrocarbons from an LNAPL oil source; J. Contam. Hydrol. 126 140–152.

    Article  Google Scholar 

  • Baek D S, Kim S B and Kim D J 2003 Irreversible sorption of benzene in sandy aquifer materials; Hydrol. Process. 17 1239–1251.

    Article  Google Scholar 

  • Bailey R T, Morway E D, Niswonger R G and Gates T K 2013 Modeling variable saturated multi-species reactive groundwater solute transport with MODFLOW-UZF and RT3D; Ground Water 51 (5) 752–761.

    Article  Google Scholar 

  • Berlin M, Suresh Kumar G and Nambi I M 2013 Numerical modelling on fate and transport of nitrate in an unsaturated system under non-isothermal condition; Euro. J. Environ. Civil Engg. 17 (5) 350–373.

    Article  Google Scholar 

  • Berlin M, Suresh Kumar G and Nambi I M 2014a Numerical modeling on transport of nitrogen from wastewater and fertilizer applied on paddy fields; Ecol. Model. 278 85–99.

    Article  Google Scholar 

  • Berlin M, Suresh Kumar G and Nambi I M 2014b Numerical modeling of biological clogging on transport of nitrate in an unsaturated porous media; Environ. Earth Sci. doi:10.1007/s12665-014-3612-z.

    Google Scholar 

  • Berlin M, Suresh Kumar G and Nambi I M 2014c Numerical modeling on the effect of dissolved oxygen on nitrogen transformation and transport in an unsaturated porous system; Environ. Model. Assess. 19 (4) 283–299.

    Article  Google Scholar 

  • Broholm K, Feenstra S and Cherry J A 1999 Solvent release into a sandy aquifer. 1. Overview of source distribution and dissolution behaviour; Environ. Sci. Technol. 33 681–690.

    Article  Google Scholar 

  • Brooks R J and Corey A T 1964 Hydraulic properties of porous media; Hydrol. Pap. 3, Colorado State Univ., Fort Collins.

  • Brusseau M L, Larsen T and Christensen T H 1991 Rate-limited sorption and non-equilibrium transport of organic chemicals in low organic carbon aquifer materials; Water Resour. Res. 27 1137–1145.

    Article  Google Scholar 

  • Burdine N T 1953 Relative permeability calculation from pore size distribution data; Trans. Am. Inst. Min. Eng. 198 71–78.

    Google Scholar 

  • Celia M A, Bouloutas E T and Zarba R L 1990 A general mass-conservative numerical solution for the unsaturated flow equation; Water Resour. Res. 26 1483–1496.

    Article  Google Scholar 

  • Chen Y M, Abriola L M, Alvarez P J, Anid P J and Vogel T M 1992 Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparisons with experimental measurements; Water Resourc. Res. 28 (7) 1833–1847.

    Article  Google Scholar 

  • Chiang C Y, Salanitro J P, Chai E Y, Colthart J D and Klein C L 1989 Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer – Data analysis and computer modelling; Ground Water 27 (6) 823–834.

    Article  Google Scholar 

  • Choi J W, Kim S B, Ha H C and Kim D J 2005 Analysis of benzene transport in a two-dimensional aquifer model; Hydrol. Process. 19 2481–2489.

    Article  Google Scholar 

  • Choi N C, Choi J W, Kim S B, Park S J and Kim D J 2009 Two-dimensional modelling of benzene transport and biodegradation in a laboratory-scale aquifer; Environ. Tech. 30 53–62.

    Article  Google Scholar 

  • Chu M, Kitanidis P K and McCarty P L 2007 Dependence of lumped mass transfer coefficient on scale and reactions kinetics for biologically enhanced NAPL dissolution; Adv. Water Resour. 30 1618–1629.

    Article  Google Scholar 

  • Clement T P, Wise W R and Molz F J 1994 A physically based, two-dimensional, finite-difference algorithm for modeling variably saturated flow; J. Hydrol 161 71–90.

    Article  Google Scholar 

  • Clement T P, Gautam T R, Lee K K, Truex M J and Davis G B 2004 Modeling of DNAPL-dissolution, rate-limited sorption and biodegradation reactions in groundwater systems; Bioremed. J. 8 (1–2) 47–64.

    Article  Google Scholar 

  • English C W and Loehr R C 1991 Degradation of organic vapors in unsaturated soils; J. Hazard. Mater. 28 55–63.

    Article  Google Scholar 

  • Fredlund D G and Xing A 1994 Equations for the soil–water characteristic curve; Can. Geotech. J. 31 521–532.

    Article  Google Scholar 

  • Frind E O, Molson J W and Schiemer M 1999 Dissolution and mass transfer of multiple organics under field conditions: The Borden emplaced source; Water Resour. Res. 35 (3) 683–694.

    Article  Google Scholar 

  • Hendry M J, Wassenaar L I and Birkham T K 2002 Microbial respiration and diffusive transport of O2,16 O 2, and18 O 16O in unsaturated soils: A mesocosm experiment; Geochim. Cosmochim. Acta 66 3367–3374.

    Article  Google Scholar 

  • Hinchee R E, Downey D C, Dupont R, Aggarmal P and Miller R N 1991 Enhancing biodegradation of petroleum hydrocarbons through soil venting; J. Hazard. Mater. 27 315–325.

    Article  Google Scholar 

  • Kampbell D H, Snyder C B, Downey D C and Hansen J E 2001 Light nonaqueous-phase liquid hydro-carbon weathering at some JP-4 fuel release sites; J. Hazard. Subst. Res. 4–1 (3) 1–7.

    Google Scholar 

  • Kim D J, Choi J W, Choi N C, Mahendran B and Lee C E 2005 Modeling of growth kinetics for Pseudomonas spp. during benzene degradation; Appl. Microb. Biotech. 69 456–462.

    Article  Google Scholar 

  • Kim S B, Park C H, Kim D J and Jury W A 2003 Kinetics of benzene biodegradation by Pseudomonas aeruginosa: Parameter estimation; Environ. Toxicol. Chem. 22 1038–1045.

    Article  Google Scholar 

  • Kim H, Annable M D and Rao P S C 2001 Gaseous transport of volatile organic chemicals in unsaturated porous media: Effect of water-partitioning and air–water interfacial adsorption; Environ. Sci. Technol. 35 4457–4462.

    Article  Google Scholar 

  • Kinzelbach W, Schäfer W and Herzer J 1991 Numerical modeling of natural and enhanced denitrification processes in aquifers; Water Resourc. Res. 27 (6) 1123– 1135.

    Article  Google Scholar 

  • Lahvis M, Baehr A L and Baker R J 1991 Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions; Water Resour. Res. 35 753–765.

    Article  Google Scholar 

  • Lee M S, Lee K K, Hyun Y, Clement T P and Hamilton D 2006 Nitrogen transformation and transport modeling in groundwater aquifers; Ecol. Modeling 192 143–159.

    Article  Google Scholar 

  • Lehmann F and Ackerer P H 1998 Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media; Transport in Porous Media 31 275–292.

    Article  Google Scholar 

  • Lin J and Hildemann L M 1995 A nonsteady-state analytical model to predict gaseous emissions of volatile organic compounds from landfills; J. Hazard. Mater. 40 271–295.

    Article  Google Scholar 

  • Mastrocicco M, Colombani N, Sbarbati C and Petittam M 2012 Assessing the effect of saltwater intrusion on petroleum hydrocarbons plumes via numerical modelling; Water Air Soil Poll. 223 4417–4427.

    Article  Google Scholar 

  • Mayer A S and Miller C T 1996 The influence of mass transfer characteristics and porous media heterogeneity on nonaqueous phase dissolution; Water Resour. Res. 32 (6) 1551–1567.

    Article  Google Scholar 

  • Mayer K U, Frind E O and Blowes D W 2002 Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions; Water Resour. Res. 38 (9) 1174.

    Article  Google Scholar 

  • Miller C T, Poirier-McNeill M M and Mayer A S 1990 Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics; Water Resour. Res. 26 (11) 2783–2796.

    Article  Google Scholar 

  • Millington R J 1959 Gas diffusion in porous media; Science 130 100–102.

    Article  Google Scholar 

  • Mitchell R J and Mayer A S 1998 A numerical model for transient-hysteretic flow and solution transport in unsaturated porous media; J. Contam. Hydrol. 50 243–264.

    Article  Google Scholar 

  • Mualem Y 1976 A new model for predicting the hydraulic conductivity of unsaturated porous media; Water Resour. Res. 12 513–522.

    Article  Google Scholar 

  • Nambi I M and Powers S E 2003 Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial saturations; Water Resour. Res. 39 (2) 1–11.

    Article  Google Scholar 

  • Nassar I N, Ukrainczyk L and Horton R 1999 Transport and fate of volatile organic chemicals in unsaturated, nonisothermal, salty porous media: 2. Experimental and numerical studies for benzene; J. Hazard. Mater. B69 169–185.

    Article  Google Scholar 

  • Natarajan N and Suresh Kumar G 2011 Numerical modelling of bacteria facilitated contaminant transport in fractured porous media; Colloids and Surfaces A: Physico. Engg. Aspects 387 104–112.

    Article  Google Scholar 

  • Ojha C S P, Hari Prasad K S, Ratha D N and Surampalli Y 2012 Virus transport through unsaturated zone: Analysis and parameter identification; J. Hazard. Toxic Radioactive Waste 15 (2) 96–105.

    Article  Google Scholar 

  • Overman A R 1975 Ion transport through sand by convective diffusion; Plant and Soil 43 663–670.

    Article  Google Scholar 

  • Phoon K K, Tan T S and Chong P C 2007 Numerical simulation of Richard’s equation in partially saturated porous media: Under-relaxation and mass balance; Geotech. Geol. Engg. 25 525–541.

    Article  Google Scholar 

  • Popovicova J 1996 Transport of gas-phase contaminants in the unsaturated zone; Ph.D Dissertation, The University of Arizona, USA.

  • Powers S E, Abriola L M and Weber W J 1994 An experimental investigation of non-aqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates; Water Resour. Res. 30 (2) 321– 332.

    Article  Google Scholar 

  • Powers S E, Loureiro C O, Abriola L M and Weber W J 1991 Theoretical study of the significance of nonequilibrium dissolution of nonaqueous phase liquids in subsurface systems; Water Resour. Res. 27 (4) 463–477.

    Article  Google Scholar 

  • Purandara B K, Varadarajan N and Venkatesh B 2008 Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study; Earth Syst. Sci. 117 (4) 477–487.

    Article  Google Scholar 

  • Reible D D, Malhiet M E and Illangasekare T H 1989 Modelling gasoline fate and transport in the unsaturated zone; J. Hazard. Mater. 22 359–376.

    Article  Google Scholar 

  • Richards L A 1931 Capillary conduction of liquids through porous mediums; Physics 1 318–333.

    Article  Google Scholar 

  • Rivett M O and Feenstra S 2005 Dissolution of an emplaced source of DNAPL in a natural aquifer setting; Environ. Sci. Technol. 39 447–455.

    Article  Google Scholar 

  • Schaerlaekens J, Venderborght J, Merckx R and Feyen J 2000 Surfactant enhanced solubilization of residual trichloroethene: An experimental and numerical analysis; J. Contam. Hydrol. 46 1–16.

    Article  Google Scholar 

  • Simunek J and Suarez D L 1994 Two-dimensional transport model for variably saturated porous media with major ion chemistry; Water Resour. Res. 30 (4) 1115–1133.

    Article  Google Scholar 

  • Sulaymon A H and Gzar H A 2011 Experimental investigation and numerical modeling of light nonaqueous phase liquid dissolution and transport in a saturated zone of the soil; J. Hazard. Mater. 186 1601–1614.

    Article  Google Scholar 

  • Unger A J A, Forsyth P A and Sudicky E A 1998 Influence of alternative dissolution models and subsurface heterogeneity on DNAPL disappearance times; J. Contam. Hydrol. 30 217–242.

    Article  Google Scholar 

  • Van Dam J C and Feddes R A 2000 Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation; J. Hydrol. 233 72–85.

    Article  Google Scholar 

  • van Genuchten M T. 1980 A closed-form equation for predicting hydraulic conductivity of unsaturated soils; Soil Sci. J. 44 (5) 892–898.

    Article  Google Scholar 

  • Vasudevan M, Suresh Kumar G and Nambi I M 2014 Numerical modeling of multicomponent LNAPL dissolution kinetics at residual saturation in a saturated subsurface system; Sadhana. doi:10.1007/s12046-014-0282-1.

    Google Scholar 

  • Voudrias E A and Li C 1993 Benzene vapor transport in unsaturated soil: Adequacy of the diffusion equation ; J. Hazard. Mater. 34 295–311.

    Article  Google Scholar 

  • Weaver J W 1996 Application of the hydrocarbon spill screening model to field sites; Conference on Non-aqueous Phase Liquids in the Subsurface Environment: Assessment and Remediation; Proceedings of the American Society of Civil Engineers, Washington DC, USA.

  • Xiang-Wei H A N, Ming-An S H A O and Horton R 2010 Estimating van Genuchten model parameters of undisturbed soils using an integral method; Pedosphere 20 (1) 55–62.

    Article  Google Scholar 

  • Yadav B K and Hassanizadeh S M 2011 An overview of biodegradation of LNAPLs in coastal (semi)-arid environment; Water Air Soil Poll. 220 225–239.

    Article  Google Scholar 

  • Yang Y R and McCarty P L 2000 Biologically enhanced dissolution of tetrachloroethene DNAPL; Environ. Sci. Technol. 34 2979–2984.

    Article  Google Scholar 

  • Zeng X and Decker M 2009 Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table; J. Hydrometeorol. 8 (3) 447–468.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the reviewers and Associate Editor of the Journal of Earth System Science for the valuable comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, M., Vasudevan, M., Kumar, G.S. et al. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario. J Earth Syst Sci 124, 655–674 (2015). https://doi.org/10.1007/s12040-015-0562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0562-0

Keywords

Navigation