Skip to main content
Log in

Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E: Implications for magma source and seawater alteration

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

The geochemical characteristics of abyssal peridotite samples from one dredge station (27°49.74S, 65°02.14E, water depth 4473 m) on the super slow-spreading Southwest Indian Ridge (SWIR) near 65°E were investigated. Abyssal peridotites recovered from this site were comprised mainly of lizardite, chlorite, carbonate and magnetite with minor amounts of talc, pyroxene phenocrysts and sparse olivines.

Serpentinites exhibit talc veins and major serpentine derived from serpentinization with relict olivine granuloblasts. Olivine grains in serpentinites display exsolution lamellae, indicating the occurrence of talc reduction or decompression during seawater–rock interaction. Pyroxene shows clear cleavage in two directions, with clinopyroxene or orthopyroxene exsolution lamellae. By contrast, bulk rock trace element patterns of serpentinites reveal depletion in most incompatible elements, similarly to the depleted mid-ocean ridge basalt mantle composition, indicating that the SWIR peridotites originated from a depleted mantle source magma and have experienced partial melting. Meanwhile, Rb, Ba, U, Pb, Sr, Li anomalies and the Ce/Pb ratio suggest that these serpentinites have been strongly altered by seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  • Alt J C and Shanks W C III 1998 Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction; J. Geophys. Res. 103 9917–9929.

    Article  Google Scholar 

  • Alt J C and Shanks W C III 2003 Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling; Geochim. Cosmochim. Acta 67 641–653.

    Article  Google Scholar 

  • Asimow P D 1999 A model that reconciles major- and trace- element data from abyssal peridotites; Earth Planet. Sci. Lett. 169 303–319.

    Article  Google Scholar 

  • Augustin N, Lackschewitz K S, Kuhn T and Devey C W 2008 Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N); Marine Geol. 256 18–29.

    Article  Google Scholar 

  • Aumento F and Loubat H 1971 The Mid-Atlantic Ridge near 45°N. XVI. Serpentinized ultramafic intrusions; Canadian J. Earth Sci. 8 631–663.

    Article  Google Scholar 

  • Bach W, Garrido C J, Paulick H, Harvey J and Rosner M 2004 Seawater–peridotite interactions: First insights from ODP Leg 209, MAR 15°N; Geochem. Geophys. Geosyst. 5(9) Q09F26, doi: 10.1029/2004GC00 0744.

    Article  Google Scholar 

  • Baker M B and Beckett J R 1999 The origin of abyssal peridotite: A reinterpretation of constraints based on primary bulk composition; Earth Planet. Sci. Lett. 171 49–61.

    Article  Google Scholar 

  • Baker M B and Stolper E M 1994 Determining the composition of high-pressure mantle melts using diamond aggregates; Geochim. Cosmochim. Acta 58 2811–2827.

    Article  Google Scholar 

  • Bebout G E, Bebout A E and Graham C M 2007 Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks; Chem. Geol. 239 284–304.

    Article  Google Scholar 

  • Bodinier J L 1988 Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps; Tectonophys. 149 67–68.

    Article  Google Scholar 

  • Bodinier J L, Dupuy C and Dostal J 1988 Geochemistry and petrogenesis of Eastern Pyrenean peridotites; Geochim. Cosmochim. Acta 52 2893–2907.

    Article  Google Scholar 

  • Bonatti E, Lawrence J R and Morandi N 1984 Serpentinization of oceanic peridotites: Temperature dependence of mineralogy and boron content; Earth Planet. Sci. Lett. 70 88–94.

    Article  Google Scholar 

  • Boschi C, Dini A, Früh-Green G L and Kelley D S 2008 Isotopic and element exchange during serpentinization at the Atlantis massif (MAR 30°N): Insights from B and Sr isotope data; Geochim. Cosmochim. Acta 72 1801–1823.

    Article  Google Scholar 

  • Bown J W and White R S 1994 Variation with spreading rate of oceanic crustal thickness and geochemistry; Earth Planet. Sci. Lett. 121 435–449.

    Article  Google Scholar 

  • Brunelli D, Seyler M, Cipriani A, Ottolini L and Bonatti E 2006 Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge); J. Petrol. 47 745–771.

    Article  Google Scholar 

  • Cannat M 1996 How thick is the magmatic crust at slow spreading oceanic ridges?; J. Geophys. Res. 101 2847–2857.

    Article  Google Scholar 

  • Cannat M, Mével C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E and Reynolds J 1995 Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N); Geology 23 49–52.

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V and Baala M 2006 Modes of seafloor generation at a melt-poor ultraslow-spreading ridge; Geology 34 605–608.

    Article  Google Scholar 

  • Charlou J L, Fouquet Y, Bougault H, Donval J P, Etoubleau J, Jean-Baptiste J, Dapoigny A, Appriou P and Rona P A 1998 Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20N fracture zone and the Mid-Atlantic Ridge; Geochim. Cosmochim. Acta 62 2323–2333.

    Article  Google Scholar 

  • Christensen N 1972 The abundance of serpentinites in the ocean crust; J. Geol. 80 709–719.

    Article  Google Scholar 

  • Class C and le Roex A P 2008 Ce anomalies in Gough island lavas – trace element characteristics of a recycled sediment component; Earth Planet. Sci. Lett. 265 475–486.

    Article  Google Scholar 

  • Dick H J B, Fisher R L and Bryan W B 1984 Mineralogic variability of the uppermost mantle along mid-ocean ridges; Earth Planet. Sci. Lett. 69 88–106.

    Article  Google Scholar 

  • Donnelly K E, Goldstein S L, Langmuir C H and Spiegelman M 2004 Origin of enriched ocean ridge basalts and implications for mantle dynamics; Earth Planet. Sci. Lett. 226 347–366.

    Article  Google Scholar 

  • Douville E, Charlou J L, Oelkers E H, Bienvenu P, Jove Colon C F, Donval J P, Fouquet Y, Prieur D and Appriou P 2002 The rainbow vent fluids (36°14N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids; Chem. Geol. 184 37–48.

    Article  Google Scholar 

  • Elthon D 1992 Chemical trends in abyssal peridotites: Refertilization of depleted suboceanic mantle; J. Geophys. Res. 97 9015–9025.

    Article  Google Scholar 

  • Engel C G and Fisher R L 1975 Granitic to ultramafic rock complexes of the Indian Ocean Ridge System, western Indian Ocean; Geol. Soc. Am. Bull. 86 1553–1578.

    Article  Google Scholar 

  • Escartin J, Hirth G and Evans B 1997 Nondilatant brittle deformation of serpentinites: Implications for Mohr–Coulomb theory and the strength of faults; J. Geophys. Res. 102 2897–2913.

    Article  Google Scholar 

  • Escartin J, Hirth G and Evans B 2001 Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere; Geology 29 1023–1026.

    Article  Google Scholar 

  • Fox P J, Schreiber E, Rowlett H and McCamy N 1976 The geology of the Oceanographer fracture zone: A model for fracture zones; J. Geophys. Res. 81 4117–4128.

    Article  Google Scholar 

  • Fruh-Green G L, Kelley D S, Bernasconi S M, Karson J A, Ludwig K A, Butterfield D A, Boschi C and Proskurowski G 2003 30,000 years of hydrothermal activity at the Lost City Vent Field; Science 301 495–498.

    Article  Google Scholar 

  • Godard M, Lagabrielle Y, Alard O and Harvey J 2008 Geochemistry of the highly depleted peridotites drilled at ODP Sites 127 and 1274 (Fifteen–Twenty Fracture Zone, Mid-Atlantic Ridge): Implications for mantle dynamics beneath a slow spreading ridge; Earth Planet. Sci. Lett. 267 410–425.

    Article  Google Scholar 

  • Hajash A and Chandler G W 1981 An experimental investigation of high-temperature interactions between rhyolite, andesite, basalt and peridotite. Contrib. Mineral. Petrol. 78 240–254.

    Article  Google Scholar 

  • Hamlyn P R and Bonatti E 1980 Petrology of mantle-derived ultramafics from the Owen Fracture Zone, Northwest Indian Ocean: Implications for the nature of the oceanic upper mantle; Earth Planet. Sci. Lett. 48 65–79.

    Article  Google Scholar 

  • Harvey J, Gannoun A, Burton K W, Rogers N W, Alard O and Parkinson I J 2006 Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge; Earth Planet. Sci. Lett. 244 606–621.

    Article  Google Scholar 

  • Hellebrand E, Snow J E, Hoppe P and Hofmann A W 2002 Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge; J. Petrol. 43 2305–2338.

    Article  Google Scholar 

  • Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N and Petigirard S 2008 High-pressure creep of serpentinite, interseismic deformation, and initiation of subduction; Science 318 1910–1913.

    Article  Google Scholar 

  • Hirose T, Bystricky M, Kunze K and Stunitz H 2006 Semi-brittle flow during dehydration of lizardite–chrysotile serpentinite deformed in torsion: Implications for the rheology of oceanic lithosphere; Earth Planet. Sci. Lett. 249 484–493.

    Article  Google Scholar 

  • Hofmann A W 1988 Chemical differentiation of the earth: The relationship between mantle, continental crust and oceanic crust; Earth Planet. Sci. Lett. 90 297–314.

    Article  Google Scholar 

  • Horita J and Berndt M E 1999 Abiogenic methane formation and isotope fractionation under hydrothermal conditions; Science 285 1055–1057.

    Article  Google Scholar 

  • Janecky D R and Seyfried W E Jr 1986 Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry; Geochim. Cosmochim. Acta 50 1357–1378.

    Article  Google Scholar 

  • Johnson K T M, Dick H J B and Shimizu N 1990 Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites; J. Geophys. Res. 95 2661–2678.

    Article  Google Scholar 

  • Kelley D S, Karson J A, Blackman D K, Früh-Green G L, Butterfield D A, Lilley M D, Olson E J, Schrenk M O, Roe K K, Lebon G T and Rivizzigno P and AT3-60 Shipboard Party 2001 An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N; Nature 412 145–149.

    Article  Google Scholar 

  • Kelley D S, Karson J A, Früh-Green G L, Yoerger D R, Shank T M, Butterfield D A, Hayes J M, Schrenk M O, Olson E J, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley A S, Brazelton W J, Roe K, Elend M J, Delacour A, Bernasconi S M, Lilley M D, Baross J A, Summons R E and Sylva S P 2005a A serpentinite-hosted ecosystem: The lost city hydrothermal field; Science 307 1428–1434.

    Article  Google Scholar 

  • Kelley K A, Plank T T, Farr L, Ludden J and Staudigel H 2005b Subduction cycling of U, Th, and Pb; Earth Planet. Sci. Lett. 234 369–383.

    Article  Google Scholar 

  • Klinkhammer G, Elderfield H, Edmond J and Mitra A 1994 Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges; Geochim. Cosmochim. Acta 58(23) 5105–5113.

    Article  Google Scholar 

  • Luo Y, Gao S, Yuan H L, Liu X M, Deltlef G, Jin Z M and Sun M 2004 Ce anomaly in minerals of eclogite and garnet pyroxenite from Dabie-Sulu ultra-high pressure metamorphic belt: Tracking subducted sediment formed under oxidizing conditions. Science in China; Series D: Earth Sciences 34 920–930.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the Earth; Chem. Geol. 120 223–253.

    Article  Google Scholar 

  • Mendel V and Sauter D 1997 Seamount volcanism at the super slow-spreading southwest Indian Ridge between 57°E and 70°E; Geology 25 99–102.

    Article  Google Scholar 

  • Mendel V, Sauter D, Parson L and Vanney J 1997 Segmentation and morphotectonic variations along a super slow-spreading center: The southwest Indian Ridge (57°–70°E); Marine Geophys. Res. 19 503–531.

    Article  Google Scholar 

  • Mével C 2003 Serpentinisation of abyssal peridotite at mid ocean ridges; Comptes Rendus Geosci. 335 825–852.

    Article  Google Scholar 

  • Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K and Kumagai H 2009 Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge; J. Petrol. 50 1299–1325.

    Article  Google Scholar 

  • Niu Y 1997 Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites; J. Petrol. 38 1047–1074.

    Article  Google Scholar 

  • Niu Y 2004 Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridge; J. Petrol. 45 2423–2458.

    Article  Google Scholar 

  • Niu Y and Hekinian R 1997 Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast-spreading ridges; Earth Planet. Sci. Lett. 146 243–258.

    Article  Google Scholar 

  • Niu Y, Langmuir C H and Kinzler R J 1997 The origin of abyssal peridotites: A new perspective; Earth Planet. Sci. Lett. 152 251–265.

    Article  Google Scholar 

  • Parkinson I J, Pearce J A, Thirlwall M F, Johnson K T M and Ingram G 1992 28 Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. Proceedings of the Ocean Drilling Program; Scientific Results 125 487–506.

    Google Scholar 

  • Patriat Ph and Parson L 1989 A survey of the Indian Ocean Triple Junction Trace within the Antarctic Plate. Implications for the junction evolution since 15 Ma; Marine Geophys. Res. 11 89–100.

    Article  Google Scholar 

  • Patriat Ph, Sauter D, Munschy M and Parson L 1997 A survey of the Southwest Indian Ridge Axis between Atlantis II Fracture Zone and the Indian Ocean Triple Junction: Regional setting and large scale segmentation; Marine Geophys. Res. 19 457–480.

    Article  Google Scholar 

  • Paulick H, Bach W, Godard M, DeHoog J C M, Suhr G and Harvey J 2006 Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments; Chem. Geol. 234 179–210.

    Article  Google Scholar 

  • Pereira M D, Shaw D M and Acosta A 2003 Mobile trace elements and fluid-dominated processes in the Ronda peridotite, southern Spain; The Canadian Mineralogist 41 617–625.

    Article  Google Scholar 

  • Prinz M, Keil K, Green J A, Reid A M, Bonatti E and Honnorez J 1976 Ultramafic and mafic dredge samples from the equatorial Mid-Atlantic Ridge and fracture zones; J. Geophys. Res. 81 4087–4103.

    Article  Google Scholar 

  • Rampone E, Romairone A and Hofmann A W 2004 Contrasting bulk and mineral chemistry in depleted mantle peridotites: Evidence for reactive porous flow; Earth Planet. Sci. Lett. 218 491–506.

    Article  Google Scholar 

  • Ray D, Banerjee R, Iyer S D and Mukhopadhyay S 2008 A new report of serpentinites from Northern Central Indian Ridge (at 6°S) – an implication for hydrothermal activity; Acta Geologica Sinica 82(6) 1213–1222.

    Article  Google Scholar 

  • Robinson C J, Bickle M J, Minshull T A, White R S and Nichols A R L 2001 Low degree melting under the Southwest Indian Ridge: The roles of mantle temperature, conductive cooling and wet melting; Earth Planet. Sci. Lett. 188 383–398.

    Article  Google Scholar 

  • Savov I P, Guggino S, Ryan J G, Fryer P and Mottl M J 2005 4. Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778– 779, South Chamorro and Conical seamounts; In: Proceedings of the Ocean Drilling Program (eds) Shinohara M, Salisbury M H and Richter C, Scientific Results 195 1–49.

  • Scambelluri M, Rampone E and Piccardo G B 2001 Fluid and element cycling in subducted serpentinite: A trace element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy); J. Petrol. 4 55–67.

    Article  Google Scholar 

  • Schroeder T, John B and Frost B R 2002 Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges; Geology 30 367–370.

    Article  Google Scholar 

  • Seyler M, Loarnd J-P, Dick H J B and Drouin M 2007 Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20N: ODP Hole 1274A; Contrib. Mineral. Petrol. 153 303–319.

    Article  Google Scholar 

  • Snow J E and Dick H J B 1995 Pervasive magnesium loss by marine weathering of peridotite; Geochim. Cosmochim. Acta 59 4219–4235.

    Article  Google Scholar 

  • Sun S-S 1980 Lead isotopic study of young volcanic rocks from Mid-Ocean ridges, Ocean Islands and Island Arcs; Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences 297(1431) 409–445.

    Google Scholar 

  • Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson K H and Kumagai H 2006 Ultramafics–Hydrothermalism–Hydrogenesis–HyperSLiME (UltraH3) linkage: A key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems; Paleontological Res. 10 269–282.

    Article  Google Scholar 

  • Tamura A, Arai S, Ishimaru S and Andal E S 2008 Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30°N: micro- and macro-scale melt penetrations into peridotites; Contrib. Mineral. Petrol. 155 491–509.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwell, Oxford, 312p.

    Google Scholar 

  • Thompson G and Melson W G 1970 Boron contents of serpentinites and metabasalts in the oceanic crust: Implications for the boron cycle in the oceans; Earth Planet. Sci. Lett. 8 61–65.

    Article  Google Scholar 

  • Turekian K K 1968 Oceans; Prentice-Hall, Engelwood Cliffs, NJ, 120p.

    Google Scholar 

  • Walter M J 1998 Melting of garnet peridotite and the origin of komatiite and depleted lithosphere; J. Petrol. 39 29–60.

    Article  Google Scholar 

  • Wenner D B and Taylor H P 1973 Oxygen and hydrogen isotope studies of serpentinisation of ultramafic rocks; Am. J. Sci. 273 207–239.

    Article  Google Scholar 

  • White R S, Mckenzie D P and O’Nions R K 1992 Oceanic crustal thickness from seismic measurements and rare earth element inversions; J. Geophys. Res. 97 19,683–19,715.

    Google Scholar 

  • White R S, Minshull T A, Bickle M J and Robinson C J 2001 Melt generation at very slow-spreading oceanic ridges:Constraints from geochemical and geophysical data; J. Petrol. 42 1171–1196.

    Article  Google Scholar 

  • Whitmarsh R B, Manatschal G and Minshull T A 2001 Evolution of magma-poor continental margins from rifting to seafloor spreading; Nature 413 150–154.

    Article  Google Scholar 

  • Wicks F J and Whittaker E J W 1977 Serpentine textures and serpentinisation; Canadian Mineralogist 15 459–488.

    Google Scholar 

  • Workman R K and Hart S R 2005 Major and trace element composition of the depleted MORB mantle (DMM); Earth Planet. Sci. Lett. 231 53–72.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the crews of the DY105-17A cruise for the help to collect samples. The authors gratefully acknowledge Shanke Liu (IGGCAS), Dingshuai Xue (IGGCAS) and He Li (IGGCAS) for technical assistance with XRD and XRF analyses. We are most grateful for the detailed and constructive comments and suggestions provided by the anonymous reviewer and the Associate Editor Dr. Somnath Dasgupta, which significantly improved the content of this paper. They also like to thank International Science Editing for checking our English. This work was supported by National Natural Science Foundation of China (Grant No. 40830849, 40976027), Shandong Province Natural Science Foundation of China for Distinguished Young Scholars (Grant No. JQ200913), and National Special Fund for the Twelfth Five Year Plan of COMRA (Grant No. DY125-12-R-02 and Grant No. DY125-11-R-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Wang, Q., Wang, X. et al. Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E: Implications for magma source and seawater alteration. J Earth Syst Sci 121, 1317–1336 (2012). https://doi.org/10.1007/s12040-012-0229-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0229-z

Keywords

Navigation