Skip to main content
Log in

Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This work was aimed to design efficient catalysts for N2O decomposition at low temperatures. Cobalt oxide (Co3O4) was prepared by hydrothermal, precipitation and combustion methods and tested for N2O decomposition. It was found that the catalysts prepared by solution combustion synthesis were most active for this reaction. Subsequently, a series of ceria (CeO2) supported Co3O4 catalysts (xCeCo) were prepared by solution combustion method and used them for N2O decomposition. All the catalysts were characterized by analytical methods like XRD, TEM, BET, XPS, UV-Vis, Raman and H 2-TPR. It was found that 10 and 20 wt..% loading of CeO2 on Co3O4 promoted the activity of Co3O4 towards N2O decomposition, whereas, higher loading of CeO2 reduced the activity. Typical results indicated that addition of CeO2 increases the surface area of Co3O4, and improves the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step for the N2O decomposition over Co3O4 spinel catalysts. Optimal CeO2 loading can increase both dispersion and surface area of Co3O4 catalysts and weaken the Co–O bond strength to promote N2O decomposition.

New ceria doped cobalt oxide catalysts were prepared by the solution combustion method which showed a capability of 100% N2O conversion at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Ravishankara A R, Daniel J S and Portmann R W 2009 Science 326 123

    Article  CAS  Google Scholar 

  2. Caillol S 2011 J. Photochem. Photobiol. C: Photochem. Rev. 12 1

    Article  Google Scholar 

  3. Kapteijn F, Rodriguez-Mirasol J and Moulijn J A 1996 Appl. Catal. B: Environ. 9 25

    Article  CAS  Google Scholar 

  4. Ohnishi C, Iwamoto S and Inoue M 2008 Chem. Eng. Sci. 63 5076

    Article  CAS  Google Scholar 

  5. Dandekar A and Vannice M A 1999 Appl. Catal. B: Environ. 22 179

    Article  CAS  Google Scholar 

  6. Haber J, Machej T, Janas J and Nattich M 2004 Catal. Today 90 15

    Article  CAS  Google Scholar 

  7. Konsolakis M, Aligizou F, Goula G and Yentekakis I V 2013 Chem. Eng. Sci. 230 286

    Article  CAS  Google Scholar 

  8. Yao K W, Jaenicke S, Lin J Y and Tan K L 1998 Appl. Catal. B: Environ. 16 291

    Article  CAS  Google Scholar 

  9. Xu X L, Xu X F, Zhang G T and Niu X J 2009 J. Fuel Chem. Technol. 37 595

    Article  CAS  Google Scholar 

  10. Maniak G, Stelmachowski P, Stanek J J, Kotarba A and Sojka Z 2011 Catal. Commun. 15 127

    Article  CAS  Google Scholar 

  11. Pieterse J A Z, Booneveld S and Van den Brink R W 2004 Appl. Catal. B-Environ. 51 215

    Article  CAS  Google Scholar 

  12. Junying W, Haian X, Ju X, Fengtao F, Zhaochi F and Can L 2013 Chin. J. Catal. 34 876

  13. Wilczkowska E, Krawczyk K, Petryk J, Sobczak J W and Kaszkur Z 2010 Appl. Catal. A-Gen. 389 165

    Article  CAS  Google Scholar 

  14. Xie X, Li Y, Liu Z Q, Haruta M and Shen W 2009 Nature 458 746

    Article  CAS  Google Scholar 

  15. Meng B, Zhao Z, Wang X, Liang J and Qiu 2013 J. Appl. Catal. B-Environ. 129 49

    Article  Google Scholar 

  16. Trovarelli A, de Leitenburg C, Boaro M and Dolcetti G 1999 Catal. Today 50 353

    Article  CAS  Google Scholar 

  17. Campbell C T and Peden C H 2005 Science 309 713

    Article  CAS  Google Scholar 

  18. Xue L, Zhang C, He H and Teraoka Y 2007 Appl. Catal. B-Environ. 75 167

    Article  CAS  Google Scholar 

  19. Asano K, Ohnishi C, Iwamoto S, Shioya Y and Inoue M 2008 Appl. Catal. B-Environ. 78 242

    Article  CAS  Google Scholar 

  20. Liu R S, Iwamoto M and Lunsford J H 1982 J. Chem. Soc., Chem. Commun. 1 78

    Article  Google Scholar 

  21. Reddy P S S, Pasha N, Rao M C, Lingaiah N, Suryanarayana I and Prasad P S 2007 Catal. Comm. 8 1406

    Article  CAS  Google Scholar 

  22. Na C W, Woo H S, Kim H J, Jeong U, Chung J H and Lee J H 2012 CrystEngComm 14 3737

    Article  CAS  Google Scholar 

  23. Gwag J S and Sohn Y K 2012 Bull. Korean Chem. Soc. 33 505

    Article  CAS  Google Scholar 

  24. Song H and Ozkan U S 2010 Catal. A: Chem. 318 21

    Article  CAS  Google Scholar 

  25. Barakat N A, Khil M S, Sheikh F A and Kim H Y 2008 J. Phys. Chem. C 112 12225

    Article  CAS  Google Scholar 

  26. Li J B, Jiang Z Q, Qian K and Huang W X 2012 Chin. J. Chem. Phys. 25 103

    Article  CAS  Google Scholar 

  27. Boaro M, Vicario M, de Leitenburg C, Dolcetti G and Trovarelli A 2003 Catal. Today 77 407

    Article  CAS  Google Scholar 

  28. Xu X L, Xu X F, Zhang G T and Niu X J 2009 J. Fuel Chem. Technol. 37 95

    Google Scholar 

  29. Farhadi S, Pourzare K and Sadeghinejad S 2013 J. Nanostructure Chem. 3 1

    Google Scholar 

  30. Mahammadunnisa S, Reddy P M K, Karuppiah J and Subrahmanyam C. 2013 Adv. Chem. 1 264

    CAS  Google Scholar 

  31. Baidya T, Dutta G, Hegde M S and Waghmare U V 2009 Dalton Trans 3 455

    Article  Google Scholar 

  32. Megarajan S K, Rayalu S, Teraoka Y and Labhsetwar N 2014 J. Mol. Catal. A: Chem. 385 112

    Article  Google Scholar 

  33. Tang C W, Kuo M C, Lin C J, Wang C B and Chien S H 2008 Catal. Today 131 520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of Senior Research Fellowship. We thank Dr. T.P. Radhakrishnan and DST-Centre for Nanotechnology, University of Hyderabad for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CH SUBRAHMANYAM.

Additional information

S K Mahammadunnisa and T Akanksha have equal contribution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAHAMMADUNNISA, S.K., AKANKSHA, T., KRUSHNAMURTY, K. et al. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts. J Chem Sci 128, 1795–1804 (2016). https://doi.org/10.1007/s12039-016-1180-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1180-3

Keywords

Navigation