Skip to main content
Log in

Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In an aqueous acidic solution, the porphyrin meso-tetra(4-sulfonatophenyl) porphyrin tetrasodium salt (TPPS) forms different kinds of assembly (micro-rods and micro-brush) depending on condition of evaporation. The exciton dynamics and emission spectra of the micro-rods and micro-brushes depend on spatial inhomogeneity. This is elucidated by time-resolved confocal microscopy.

Water soluble ionic porphyrin, TPPS forms two different kinds of micro-structures depending on the rate of evaporation from an aqueous acidic solution. Each of such microstructure exhibits morphology-dependent distinct behaviour in fluorescence intensity fluctuation and fluorescence anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lee H, Cheng Y and Fleming G R 2007 Science 316 1462

    Article  CAS  Google Scholar 

  2. Scholes G D, Fleming G R, Olaya-Castro A and Grondelle R 2011 Nat. Chem. 3 763

    Article  CAS  Google Scholar 

  3. Blankenship R E, Tiede D M, Barber J, Brudvig G W, Fleming G R, Ghirardi M, Gunner M R, Junge W, Kramer D M, Melis A, Moore T A, Moser C C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C and Sayre R T 2011 Science 332 805

    Article  CAS  Google Scholar 

  4. Fleming G R, Schlau-Cohen G S, Amarnath K and Zaks J 2012 Faraday Discuss. 155 27

    Article  CAS  Google Scholar 

  5. Balaban T S 2005 Acc. Chem. Res. 38 612

    Article  CAS  Google Scholar 

  6. Medforth C J, Wang Z, Martin K E, Song Y, Jacobsen J L and Shelnutt J 2009 Chem. Commun. 7261

  7. McHale J L 2012 J. Phys. Chem. Lett. 3 587

    Article  CAS  Google Scholar 

  8. Verma S and Ghosh H N 2012 J. Phys. Chem. Lett. 3 1877

    Article  CAS  Google Scholar 

  9. Maiti N C, Ravikanth M, Mazumdar S and Periasamy N 1995 J. Phys. Chem. 99 17192

    Article  CAS  Google Scholar 

  10. Saga Y, Wazawa T, Mizoguchi T, Ishii Y, Yanagida T and Tamiaki H 2002 Photochem. Photobiol. 75 433

    Article  CAS  Google Scholar 

  11. Roger C, Miloslavina Y, Brunner D, Holzwarth A R and Wurthner F 2008 J. Am. Chem. Soc. 130 5929

    Article  Google Scholar 

  12. Hajjaj F, Yoon Z S, Yoon M, Park J, Satake A, Kim D and Kobuke Y 2006 J. Am. Chem. Soc. 128 4612

    Article  CAS  Google Scholar 

  13. Rich C C and McHale J L 2012 Phys. Chem. Chem. Phys. 14 2362

    Article  CAS  Google Scholar 

  14. Eisele D M, Cone C W, Bloemsma E A, Vlaming S M, van der Kwaak C G F, Silbey R J, Bawendi M G, Knoester J, Rabe J P and Vanden B D A 2012 Nat. Chem. 4 655

    Article  CAS  Google Scholar 

  15. Friesen B A, Nishida K R A, McHale J L and Mazur U 2009 J. Phys. Chem. C 113 1709

    Article  CAS  Google Scholar 

  16. Friesen B A, Wiggins B, McHale J L, Mazur U and Hipps K W 2010 J. Am. Chem. Soc. 132 8554

    Article  CAS  Google Scholar 

  17. Schwab A D, Smith D E, Bond-Watts B, Johnston D E, Hone J, Johnson A T, de Paula J C and Smith W F 2004 Nano. Lett. 4 1261

    Article  CAS  Google Scholar 

  18. Kitahama Y, Kimura Y and Takazawa K 2006 Langmuir 22 7600

    Article  CAS  Google Scholar 

  19. Hollingsworth J V, Richard A J, Vicente M G H and Russo P S 2012 Biomacromolecules 13 60

    Article  CAS  Google Scholar 

  20. Wan Y, Stradomska A, Fong S, Guo Z, Schaller R D, Wiederrecht G P, Knoester J and Huang L 2014 J. Phys. Chem. C 118 24854

    Article  CAS  Google Scholar 

  21. Ghadamgahi M and Ajloo D 2013 J. Chem. Sci. 125 627

    Article  CAS  Google Scholar 

  22. Setsune J 2012 J. Chem. Sci. 124 1151

    Article  CAS  Google Scholar 

  23. Kalimuthu P, Sivanesan A and John S A 2012 J. Chem. Sci. 124 1315

    Article  CAS  Google Scholar 

  24. Collini E and Scholes G D 2009 Science 323 369

    Article  CAS  Google Scholar 

  25. Cognet L, Tsyboulski D A, Rocha J D R, Doyle C D, Tour J M and Weisman R B 2007 Science 316 1465

    Article  CAS  Google Scholar 

  26. Jendrny M, Aartsma T J and Köhler J 2012 J. Phys. Chem. Lett. 3 3745

    Article  CAS  Google Scholar 

  27. Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant D A and Vacha M 2011 J. Am. Chem. Soc. 133 6703

    Article  CAS  Google Scholar 

  28. Shibata Y, Tateishi S, Nakabayashi S, Itoh S and Tamiaki H 2010 Biochemistry 49 7504

    Article  CAS  Google Scholar 

  29. Sengupta S, Ebeling D, Patwardhan S, Zhang X, Berlepsch H, Bçttcher C, Stepanenko V, Uemura S, Hentschel C, Fuchs H, Grozema F C, Siebbeles L D A, Holzwarth A R, Chi L and Würthner F 2012 Angew. Chem. Int. Ed. 51 6378

    Article  CAS  Google Scholar 

  30. Forkey J N, Quinlan M E, Shaw M A, Corrie J E T and Goldman Y E 2003 Nature 422 399

    Article  CAS  Google Scholar 

  31. Chappaz-Gillot C, Marek P L, Blaive B J, Canard G, Bürck J, Garab G, Hahn H, Jávorfi T, Kelemen L and Krupke R 2012 J. Am. Chem. Soc. 134 944

    Article  CAS  Google Scholar 

  32. Furumaki S, Vacha F, Hirata S and Vacha M 2014 ACS Nano. 8 2176

    Article  CAS  Google Scholar 

  33. Vallée R A L, Marsal P, Braeken E, Habuchi S, De Schryver F C, Auweraer M V, Beljonne D and Hofkens J 2005 J. Am. Chem. Soc. 127 12011

    Article  Google Scholar 

  34. Zondervan R, Kulzer F, Berkhout G C G and Orrit M 2007 Proc. Natl. Acad. Sci. USA 104 12628

    Article  CAS  Google Scholar 

  35. Zhang G, Xiao L, Zhang F, Wang X and Jia S 2010 Phys. Chem. Chem. Phys. 12 2308

    Article  CAS  Google Scholar 

  36. Barbara P F, Gesquiere A J, Park S J and Lee Y J 2005 Acc. Chem. Res. 38 602

    Article  CAS  Google Scholar 

  37. Wöll D, Braeken E, Deres A, De Schryver F C, Uji-i H and Hofkens J 2009 Chem. Soc. Rev. 38 313

    Article  Google Scholar 

  38. Hu D, Yu J, Wong K, Bagchi B, Rossky P J and Barbara P F 2000 Nature 405 1030

    Article  CAS  Google Scholar 

  39. Gradinaru C C, Marushchak D O, Samim M and Krull U J 2010 Analyst 135 452

    Article  CAS  Google Scholar 

  40. Chattoraj S, Chowdhury R, Dey S K, Jana S S and Bhattacharyya K 2015 J. Phys. Chem. B 119 8842

    Article  CAS  Google Scholar 

  41. Chattoraj S and Bhattacharyya K 2014 J. Phys. Chem. C 118 22339

    Article  CAS  Google Scholar 

  42. Drain C M, Varotto A and Radivojevic I 2009 Chem. Rev. 109 1630

    Article  CAS  Google Scholar 

  43. Waltera M G, Wamser C C and Rudineb A B 2010 J. Porphyrins Phthalocyanines 14 759

    Article  Google Scholar 

  44. Miura A, Yanagawa Y and Tamai N 2001 J. Microscopy 202 401

    Article  CAS  Google Scholar 

  45. Leishman C W and McHale J L 2015 J. Phys. Chem. C 119 28167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Department of Science and Technology, India (Centre for Ultrafast Spectroscopy and Microscopy Project and J. C. Bose Fellowship) and the Council of Scientific and Industrial Research (CSIR) for generous research support. SC thanks CSIR for awarding fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KANKAN BHATTACHARYYA.

Additional information

Dedicated to Professor T K Chandrasekhar on the occasion of his 60th birth anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHATTORAJ, S., BHATTACHARYYA, K. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy. J Chem Sci 128, 1717–1724 (2016). https://doi.org/10.1007/s12039-016-1155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1155-4

Keywords

Navigation