Skip to main content
Log in

Anti-oxidant activity of 6-gingerol as a hydroxyl radical scavenger by hydrogen atom transfer, radical addition and electron transfer mechanisms

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Mechanisms of anti-oxidant action of 6-gingerol as a hydroxyl radical scavenger have been investigated using the transition state theory within the framework of density functional theory. Hydrogen abstraction by a hydroxyl radical from the different sites of 6-gingerol and addition of the former to the different sites of the latter were studied. Electron transfer from 6-gingerol to a hydroxyl radical was also studied. Solvent effect in aqueous media was treated using the integral equation formalism of the polarizable continuum model (IEF-PCM). Reaction rate constants in aqueous media were generally found to be larger than those in gas phase. The tunneling contributions to rate constants were found to be appreciable. Our results show that 6-gingerol is an excellent anti-oxidant and would scavenge hydroxyl radicals efficiently.

Hydrogen abstraction, radical adduct formation and single electron transfer as three mechanisms of antioxidant action of 6-gingerol as a hydroxyl radical scavenger have been investigated using transition state theory within the framework of density functional theory. 6-Gingerol is shown to be an excellent hydroxyl radical scavenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hussain S P, Hofseth L J and Harris C C 2003 Nat. Rev. Cancer 3 276

    Article  CAS  Google Scholar 

  2. White B, Smyth M R, Stuart J D and Rusling J F 2003 J. Am. Chem. Soc. 125 6604

    Article  CAS  Google Scholar 

  3. Jena N R and Mishra P C 2005 J. Phys. Chem. B 109 14205

    Article  CAS  Google Scholar 

  4. Ramakrishnan N, Kalinich J F and McClain D E 1996 Biochem. Pharmacol. 51 1443

    Article  CAS  Google Scholar 

  5. Kehrer J P 2000 Toxicology 149 43

    Article  CAS  Google Scholar 

  6. Finkel T 1999 J. Leukocyte Biol. 65 337

    CAS  Google Scholar 

  7. Greenberg M M 2007 Org. Biomol. Chem. 5 18

    Article  CAS  Google Scholar 

  8. Simons J 2006 Acc. Chem. Res. 39 772

    Article  CAS  Google Scholar 

  9. Mishina Y, Duguid E M and He C 2006 Chem. Rev. 106 215

    Article  CAS  Google Scholar 

  10. Wyatt M D and Pittman D L 2006 Chem. Res. Toxicol. 19 1580

    Article  CAS  Google Scholar 

  11. Neeley W L and Essigmann J M 2006 Chem. Res. Toxicol. 19 491

    Article  CAS  Google Scholar 

  12. Bignami M, O’Driscoll M, Aquilina G and Karran P 2000 Mutat. Res. 462 71

    Article  CAS  Google Scholar 

  13. Loechler E L, Green C L and Essigmann J M 1984 Proc. Natl. Acad. Sci. U.S.A. 81 6271

    Article  CAS  Google Scholar 

  14. Sarma A D, Mallick A R and Ghosh A K 2010 Int. J. Pharma Sci. Res. 1 185

    Google Scholar 

  15. Agnihotri N and Mishra P C 2009 J. Phys. Chem. B 113 12096

    Article  CAS  Google Scholar 

  16. Yadav A and Mishra P C 2013 J. Mol. Model. 9 767

    Article  Google Scholar 

  17. Tiwari M K and Mishra P C 2013 J. Mol. Model. 19 5445

    Article  CAS  Google Scholar 

  18. Aoki K, Cortes A R, Ramirez M C, Gomez H M and Lopez M F J 2008 J. Ethnopharmacol. 116 96

    Article  Google Scholar 

  19. Shukla Y and Singh M 2007 Food Chem. Toxicol. 45 683

    Article  CAS  Google Scholar 

  20. Bhattarai S, Tran V H and Duke C C 2001 J. Pharm. Sci. 90 1658

    Article  CAS  Google Scholar 

  21. Mariadoss A V, Kathiresan S, Muthusamy R and Kathiresan S 2013 Asian Pac. J. Cancer Prev. 14 3123

    Article  Google Scholar 

  22. Suresh K, Manoharan S, Vijayaanand M A and Sugunadevi G 2010 Carcino. Pharmacol. 62 1178

    CAS  Google Scholar 

  23. Ghosh A K, Sarkar and Mahmud A K 2011 Int. J. Pharma Bio-Sci. 2 817

    Google Scholar 

  24. Dugasania S, Pichikac M R, Nadarajahc V D, Balijepalli M K, Satyanarayana T and Korlakuntab J N 2010 J. Ethnopharmacol. 127 515

    Article  Google Scholar 

  25. Surh Y J 2002 Food Chem. Toxicol. 40 1091

    Article  CAS  Google Scholar 

  26. Jung Park Y J, Wen J, Bang S, Park S W and Song S Y 2006 Yonsei Med. J. 47 688

    Article  Google Scholar 

  27. Abdullah S, Abidin S A Z, Murad N A, Makpoll S, Ngah W Z W and Yusof Y A M 2010 Afr. J. Biochem. Res. 4 134

    Google Scholar 

  28. Hiserodt R D, Franzblau S G and Rosen R T 1998 J. Agric. Food Chem. 46 2504

    Article  CAS  Google Scholar 

  29. Jolad S D, Lantz R C, Solyom A M, Chen G J, Bates R B and Timmermann B N 2004 Phytochemistry 65 1937

    Article  CAS  Google Scholar 

  30. Navas-Acien A, Silbergeld E K, Pastor-Barriuso R and Guallar E 2008 JAMA 300 814

    Article  CAS  Google Scholar 

  31. Longnecker M P and Daniels J L 2001 Environ. Health Perspect. 109 871

    Article  Google Scholar 

  32. Chakraborty D, Mukherjee A, Sikdar S, Paul A, Ghosh S and Khuda-Bukhsh A R 2012 Toxicol. Lett. 210 34

    Article  CAS  Google Scholar 

  33. Saha P, Das B and Chaudhuri K 2013 Antimicrob. Agents Chemother. 57 4373

    Article  CAS  Google Scholar 

  34. Lee C, Yang W and Parr R G 1988 Phys. Rev. B Condens. Matter. 37 785

    Article  CAS  Google Scholar 

  35. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  36. Zhao Y and Truhlar D G 2006 J. Phys. Chem. A 110 5121

    Article  CAS  Google Scholar 

  37. Zhao Y and Truhlar D G 2008 J. Chem. Theory Comput. 4 1849

    Article  CAS  Google Scholar 

  38. Laidler K J 2004 In Chemical Kinetics 3rd Edn. (Delhi: Pearson Education (Singapore)). p 89

  39. Miertus S, Scrocco E and Tomasi J 1981 Chem. Phys. 55 117

    Article  CAS  Google Scholar 

  40. Miertus S and Tomasi J 1982 Chem. Phys. 65 239

    Article  CAS  Google Scholar 

  41. Dennington R, Keith T and Millam J 2009 GaussView, Version 5. Semichem. Inc. Shawnee Mission, K S

  42. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam M J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V and Cioslowski J, (Gaussian 09, revision D.01, Gaussian Inc.: Wallingford, CT USA) (2009)

  43. Prasad A K and Mishra P C 2014 J. Phys. Org. Chem. 27 18

    Article  CAS  Google Scholar 

  44. Marcus R A 1964 Annu. Rev. Phys. Chem. 15 155

    Article  CAS  Google Scholar 

  45. Marcus R A 1993 Rev. Mod. Phys. 65 599

    Article  CAS  Google Scholar 

  46. Marcus R A 1997 Pure Appl. Chem. 69 13

    Article  CAS  Google Scholar 

  47. Nelsen S F, Blackstock S C and Kim Y 1987 J. Am. Chem. Soc. 109 677

    Article  CAS  Google Scholar 

  48. Nelsen S F, Weaver M N, Luo Y, Pladziewicz J R, Ausman L K, Jentzsch T L and O’Konek J J 2006 J. Phys. Chem. A 110 11665

    Article  CAS  Google Scholar 

  49. Anglada J M 2004 J. Am. Chem. Soc. 126 9809

    Article  CAS  Google Scholar 

  50. Litwinienko G and Ingold K U 2004 J. Org. Chem. 69 5888

    Article  CAS  Google Scholar 

  51. Barreto P R P, Vilela A F A and Gargano R 2003 J. Mol. Struct. (THEOCHEM) 664 135

    Article  Google Scholar 

  52. Ng M., Mok D K W, Lee E P F and Dyke J M 2013 J. Comput. Chem. 34 545

    Article  CAS  Google Scholar 

  53. De A K, Chaudhuri B, Bhattacharjee S and Dutta B K 1999 J. Hazard. Mater. B 64 91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (PCM) is thankful to the National Academy of Sciences (NASI) for awarding a Senior Scientist Fellowship and for financial support. MKT is thankful to the University Grants Commission (New Delhi) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C MISHRA.

Additional information

Supplementary Information (SI)

The electronic supporting information can be seen at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 4.80 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TIWARI, M.K., MISHRA, P.C. Anti-oxidant activity of 6-gingerol as a hydroxyl radical scavenger by hydrogen atom transfer, radical addition and electron transfer mechanisms. J Chem Sci 128, 1199–1210 (2016). https://doi.org/10.1007/s12039-016-1128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1128-7

Keywords

Navigation