Skip to main content
Log in

Development and characterization of stabilized, polymerized phospholipid bilayers on silica particles for specific immobilization of His-tagged proteins

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Stabilized phospholipid bilayer (PLB) coated silica microspheres were prepared via polymerization of lipid monomers. These lipid coated silica microspheres are stable to both extended storage in solution at 4C and dry storage at room temperature. These stabilized lipid coated microspheres have also been functionalized with nickel-chelating lipids, a commonly used tool for immobilizing polyhistidine-tagged proteins. It is shown that 6xHis-EGFP interacts with (poly)bis-SorbPC/DOGS-NTA-Ni2+ coated silica and this interaction was interrupted by washing with imidazole indicating the reversibility of the interaction. No interaction was observed between the functionalized silica substrate and EGFP, which lacks the 6xHis-tag. Furthermore, these biocompatible (poly)bis-SorbPC coated microspheres were able to minimize non-specific protein adsorption.

Biocompatible and highly stable phospholipid bilayers supported on silica microspheres were prepared by UV polymerization of a synthetic lipid. The resulting polymeric coatings were stable to extended storage in both solution and dry conditions. Furthermore, these biocompatible polymeric phospholipid bilayers allow incorporation of biologically and chemically important chemical moieties such as NTA-Ni2+ and exhibited enhanced capability of reducing nonspecific protein adsorption. X-axis in the figure is fluorescence intensity of GFP in a.u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gilbert G E, Drinkwater D, Barter S and Clouse S B 1992 J. Biol. Chem. 267 15861

    CAS  Google Scholar 

  2. Fan L Q, Gioannini T L, Wolinsky T, Hiller J M and Simon E J 1995 J. Neurochem. 65 2537

    Article  CAS  Google Scholar 

  3. Devanathan S, Yao Z P, Salamon Z, Kobilka B and Tollin G 2004 Biochemistry 43 3280

    Article  CAS  Google Scholar 

  4. Salamon Z, Cowell S, Varga E, Yamamura H I, Hruby V J and Tollin G 2000 Biophys. J. 79 2463

    Article  CAS  Google Scholar 

  5. Horie M, Yanagisawa H and Sugawara M 2007 Anal. Biochem. 369 192

    Article  CAS  Google Scholar 

  6. Kloda A, Lua L, Hall R, Adams D J and Martinac B 2007 Proc. Natl. Acad. Sci. U. S. A. 104 1540

    Article  CAS  Google Scholar 

  7. Sukharev S I, Blount P, Martinac B and Kung C 1997 Annu. Rev. Physiology 59 633

    Article  CAS  Google Scholar 

  8. Loidl-Stahlhofen A, Kaufmann S, Braunschweig T and Bayerl T M 1996 Nat. Biotechnol. 14 999

    Article  CAS  Google Scholar 

  9. Lamparski H, Liman U, Barry J A, Frankel D A, Ramaswami V, Brown M F and O’Brien D F 1992 Biochemistry 31 685

    Article  CAS  Google Scholar 

  10. Gilbert G E, Drinkwater D, Barter S and Clouse S B 1992 J. Biol. Chem. 267 15861

    CAS  Google Scholar 

  11. Deng Y, Wang Y, Holtz B, Li J, Traaseth N, Veglia G, Stottrup B J, Elde R, Pei D, Guo A and Zhu X Y 2008 J. Am. Chem. Soc. 130 6267

    Article  Google Scholar 

  12. Adem S M, Mansfield E, Keogh J P, Hall H K and Aspinwall C A 2013 Anal. Chim. Acta 772 93

    Article  CAS  Google Scholar 

  13. Ross E E, Mansfield E, Haung Y and Aspinwall C A 2005 J. Am. Chem. Soc. 127 16756

    Article  CAS  Google Scholar 

  14. Sigal G B, Bamdad C, Barberis A, Strominger J and Whitesides G M 1996 Anal. Chem. 68 490

    Article  CAS  Google Scholar 

  15. Stora T, Dienes Z, Vogel H and Duschl C 2000 Langmuir 16 5471

    Article  CAS  Google Scholar 

  16. Schmidt E, Keller T A, Dienes Z and Vogel H 1997 Anal. Chem. 69 1979

    Article  Google Scholar 

  17. Ho C H, Limberis L, Caldwell K D and Stewart R J 1998 Langmuir 14 3889

    Article  CAS  Google Scholar 

  18. Kang E, Park J W, McClellan S J, Kim J M, Holland D P, Lee G U, Franses E I, Park K and Thompson D H 2007 J. Am. Chem. Soc. 231 6281

    Google Scholar 

  19. Raedler U, Mack J, Persika N, Jung G and Tampe R 2000 Biophys. J. 79 3144

    Article  Google Scholar 

  20. Fischer N O, Blanchette C D, Chromy B A, Kuhn E A, Segelke B W, Corzett M, Bench G, Mason P W and Hoeprich P D 2009 Bioconjugate Chem. 20 460

    Article  CAS  Google Scholar 

  21. Lauer S A and Nolan J P 2002 Cytometry 48 136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Cellular Imaging Facility Core of the University of Arizona for the flow cytometry experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SEID M ADEM.

Additional information

Supplementary Information

Fluorescence images showing: the stability of (poly) bis-SorbPC coated silica microspheres to extended storage at 4C and dry storage and acetonitrile washing; functionalization with DOGS-NTA-Ni2+ and non-specific protein adsorption of (poly)bis-SorbPC coated silica microspheres are presented in the supplemental information available at www.ias.ac.in/chemsci

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.23 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ADEM, S.M. Development and characterization of stabilized, polymerized phospholipid bilayers on silica particles for specific immobilization of His-tagged proteins. J Chem Sci 127, 729–735 (2015). https://doi.org/10.1007/s12039-015-0829-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0829-7

Keywords

Navigation