Skip to main content
Log in

Mitochondrial alternative oxidase pathway helps in nitro-oxidative stress tolerance in germinating chickpea

  • Brief communication
  • Published:
Journal of Biosciences Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Alber NA, Sivanesan H and Vanlerberghe GC 2017 The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ. 40 1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B and Radi R 2003 Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25 295–311

    Article  CAS  PubMed  Google Scholar 

  • Arnholdt-Schmitt B, Costa J and Melo D 2006 AOX-a functional marker for efficient cell reprogramming under stress? Trends Plant Sci. 11 281–287

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, et al. 2005 Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J. Exp. Bot. 56 1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Batelli G, Verslues PE, Agius F, et al. 2007 SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol. Cell Biol. 27 7781–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Chaki M, Sánchez-Calvo B, et al. 2013 Protein tyrosine nitration in pea roots during development and senescence. J. Exp. Bot. 64 1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. 2014 Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 65 527–538

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al. 2015 Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J. Exp. Bot. 66 5983–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254

  • Chaki M, Valderrama R, Fernández-Ocaña AM, et al. 2011 High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant Cell Environ. 34 1803–1818

    Article  CAS  PubMed  Google Scholar 

  • Che-Othman MH, Millar AH and Taylor NL 2017 Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell Environ. 40 2875–2905

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Chaki M, Leterrier M, et al. 2009 Protein tyrosine nitration: a new challenge in plants. Plant Signal. Behav. 4 920–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Leterrier M, Begara-Morales JC, et al. 2013 Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochim. Biophys. Acta 1830 4981–4989

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Guan D, Sun K, et al. 2013 Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochim. Biophys. Sin. 45 985–994

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandy P 2006 Peroxynitrite: just an oxidative/nitrosative stressor or a physiological regulator as well? Br. J. Pharmacol. 148 1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Raihan MRH, Masud AAC, et al. 2021 Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol Sci. 22 9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, et al. 2015 Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J. Exp. Bot. 66 989–999

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU and Bykova NV 2018 Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radical. Biol. Med. 122 74–85

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Szőllősi R, Feigl G, et al. 2021 Nitric oxide signalling in plant nanobiology: current status and perspectives. J. Exp. Bot. 72 928–940

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Singh P, Kaladhar VC, et al. 2022 Phytoglobin-NO cycle and AOX pathway play a role in anaerobic germination and growth of deepwater rice. Plant Cell Environ. 45 178–190

    Article  CAS  PubMed  Google Scholar 

  • León J 2022 Protein tyrosine nitration in plant nitric oxide signaling. Front. Plant Sci. 13 859374

    Article  PubMed  PubMed Central  Google Scholar 

  • Manbir Singh P, Kumari A, et al. 2022 Alternative oxidase plays a role in minimizing ROS and RNS produced under salinity stress in Arabidopsis thaliana. Physiol. Plant. 174 e13649

    Article  CAS  PubMed  Google Scholar 

  • Melo PM, Silva LS, Ribeiro I, et al. 2011 Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol. 157 1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AH and Day DA 1996 Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 398 155–158

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Kumari A, Singh P, et al. 2021 Isolation and measurement of respiration and structural studies of purified mitochondria from heterotrophic plant tissues. Curr. Protoc. 1 e326

    Article  CAS  PubMed  Google Scholar 

  • Popov VN, Syromyatnikov MY, Fernie AR, et al. 2021 The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. J. Exp. Bot. 72 793–807

    Article  CAS  PubMed  Google Scholar 

  • Radi R 2004 Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 101 4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasool S, Latef AAHA, Ahmad P 2015 Chickpea: Role and responses under abiotic and biotic stress; in Legumes under environmental stress: yield, improvement and adaptations (Eds.) MM Azooz and P Ahmad (New York: John Wiley & Sons, Ltd.) p 71

  • Royo B, Moran JF, Ratcliffe RG, et al. 2015 Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate. J. Exp. Bot. 66 6273–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selinski J, Hartmann A, Kordes A, et al. 2017 Analysis of posttranslational activation of alternative oxidase isoforms. Plant Physiol. 174 2113–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons BH, Millenaar FF, Mulder L, et al. 1999 Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol. 120 529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach AL, Gonzàlez-Meler MA, Sweet CR, et al. 2002 Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. Biochim. Biophys. Acta 1554 118–128

    Article  CAS  PubMed  Google Scholar 

  • Van Aken O 2021 Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiol. 186 36–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe GC, Dahal K, Alber NA, et al. 2020 Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 52 197–211

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Day DA, Wiskich JT, et al. 1995 Alternative oxidase activity in tobacco leaf mitochondria: dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol. 109 353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma A, Kumari A, Mur LAJ, et al. 2018 A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production. Free Radical Biol. Med.. 122 40–51

    Article  CAS  Google Scholar 

  • Xu F, Yuan S and Lin H-H 2011 Response of mitochondrial alternative oxidase (AOX) to light signals. Plant Signal. Behav. 6 55–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabalza A, van Dongen JT, Froehlich A, et al. 2009 Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol. 149 1087–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Zhang Q, Liu M, et al. 2021 Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22 4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Pooja Singh for teaching the isolation of mitochondria to JJ and SBS.

Funding

This work was supported by Science and Engineering Research Board SERB Core grant CRG/2019/004534, DBT-RRSFP-SAHAJ, BT/INF/22/SP45162/2021, and Indo-Swiss grant BT/IN/SWISS/47/JGK/2018-2019 from the Department of Biotechnology, Government of India. SBS acknowledge the Junior Research Fellowship from CSIR. JJ acknowledges the Junior Research Fellowship from the University Grants Commission.

Author information

Authors and Affiliations

Authors

Contributions

JGK conceptualized the idea and designed experiments. JJ and SBS performed experiments. JJ, SBS, and JGK wrote the manuscript.

Corresponding author

Correspondence to Kapuganti Jagadis Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Corresponding editor: Agepati S Raghavendra

This article is part of the Topical Collection: Plant Mitochondria: Properties and Interactions with Other Organelles.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Samant, S.B. & Gupta, K.J. Mitochondrial alternative oxidase pathway helps in nitro-oxidative stress tolerance in germinating chickpea. J Biosci 49, 53 (2024). https://doi.org/10.1007/s12038-024-00424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-024-00424-z

Keywords

Navigation