Skip to main content
Log in

Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associated with capsinoids synthesis in Capsicum annuum L.

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Capsinoids are non-pungent analogues of capsaicinoids in pepper (Capsicum spp). The absence of pungency, in addition to their biological activities similar to that of capsaicinoids such as anti-inflammatory, antimicrobial, and antioxidant properties, makes capsinoids an excellent option for increasing use in human and animal nutrition, as well as health and pharmaceutical industries. There are only few sources of pepper producing capsinoids, and one of them (accession 509–45-1), Capsicum annuum L., is a potential source for increasing capsinoids content using strategies as controlled elicitation during plant production in the greenhouse. In this research we evaluated the effect of weekly and one-day-before-harvest foliar applications of hydrogen peroxide, salicylic acid and a xyloglucan oligosaccharide on the concentration of capsiate in fruits of this pepper accession, as well as the gene expression of phenylalanine ammonia-lyase (pal), putative aminotransferase (pamt), capsaicin synthase (at3) and β-keto acyl synthase (kas). Results showed that the two tested concentrations of H2O2 significantly increased capsiate content and gene expression associated with capsaicinoids (pamt, at3 and kas) and the phenylpropanoids (pal) pathways. Plant yield was not affected using this induction strategy. Our results indicated that the pre-harvest and weekly application of hydrogen peroxide and xyloglucan oligosaccharide improved production of capsiate in C. annuum L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Abraham-Juarez MD, Rocha-Granados MD, Lopez MG, Rivera-Bustamante RF and Ochoa-Alejo N 2008 Virus-induced silencing of Comt, pAmt and kas genes results in a rediuction of capsaicnoid accumulation in chili pepper fruits. Planta 227 681–895

    Article  Google Scholar 

  • Amin ARMR, Kucuk O, Khuri FR and Shin DM 2009 Perspectives for cancer prevention with natural compounds. J. Clin. Oncol. 27 2712–2725

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigliardi B, Galati F 2013 Innovation trends in the food industry: the case of functional foods. Trends Food Sci. Technol. 31 118–129

    Article  CAS  Google Scholar 

  • Booth FW, Roberts CK, Laye MJ 2012 Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2 1143–1211

    PubMed  PubMed Central  Google Scholar 

  • Chapa-Oliver AM and Mejia-Teniente L 2016 Capsaicin: from plants to a cancer-suppressing agent. Molecules 21 931–945

    Article  Google Scholar 

  • Chen J, Yan Y and Guo Z 2015 Identification of hydrogen peroxide responsive ESTs involved in phenylethanoid glycoside biosynthesis in Cistanche salsa. Cell Culture 59 695–700

    CAS  Google Scholar 

  • Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, Hollenbeck AR, Schatzkin A, Sinha R 2010 A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 70 2406–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT and Kostov RV 2012 Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med. 18 337–347

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Pérez MG, Rocha-Guzmán NE, Mercado-Silva E, Loarca-piña G and Reynoso-Camacho R 2014 Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. J. Food Chem. 156 273–278

    Article  Google Scholar 

  • Jarret RL, Bolton J and Perkins B 2014 509-45-1, a Capsicum annuum pepper germplasm containing high concentrations of capsinoids. Hortscience 49 107–108

    Google Scholar 

  • Kampa M and Castanas E 2008 Human health effects of air pollution. Environ. Pollut. 151 362–367

    Article  CAS  PubMed  Google Scholar 

  • Khan ZH, Khan MMA, Aftab T, Idrees M and Naeem M 2011 Influence of alginate oligosaccharides on alkaloids in opium. Front. Agric. China 5 122–127

    Article  Google Scholar 

  • Kisaka H, Lang Y, Sugiyama R, Miwa T and Yazawa S 2011 Genetically modified plant capable of biosynthesizing capsinoid. US Patent 2011/0166371A1

  • Kobata K, Toyoshima M, Kawamura M and Watanabe T 1998 Lipase-catalyzed synthesis of capsaicin analogs using natural oils as an acyl donor. Biotechnol. Lett. 20 781–783

    Article  CAS  Google Scholar 

  • Kok BE, Coffey KA, Cohn MA, Catalino LI, Vacharkulksemsuk T, Algoe SB, Brantley M and Fredrickson BL 2013 How positive emotions build physical health : perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychol. Sci. 24 1123–32

    Article  PubMed  Google Scholar 

  • Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC and Reiter W 2003 The MUR3 gene of arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15 1662–1670

  • Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S, Kawada T, Hashizume S and Fushiki T 2003 Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J. Appl. Physiol. 95 2408–2415

    Article  CAS  PubMed  Google Scholar 

  • Mejía-Teniente L, Durán-Flores FD, Chapa-Oliver AM, Torres-Pacheco I, Cruz-Hernández A, González-Chavira MM, Ocampo-Velázquez RV and Guevara-González RG 2013 Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int. J. Mol. Sci. 14 10178–10196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Villarreal M, Vargas-Arispuro I, Islas-Osuna MA, González-Aguilar G and Martínez-Téllez MÁ 2011 Pectin-derived oligosaccharides increase color and anthocyanin content in flame seedless grapes. J. Sci. Food Agric. 91 1928–1930

    Article  CAS  PubMed  Google Scholar 

  • Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa and Fushiki T 2001 Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci. Biotechnol. Biochem. 65 2735–2740

    Article  CAS  PubMed  Google Scholar 

  • Rosa A, Deiana M, Casu V, Paccagnini S, Appendino G, Ballero M and Dessi MA 2002 Antioxidant activity of capsinoids. J. Agric. Food Chem. 50 7396–7401

    Article  CAS  PubMed  Google Scholar 

  • Rubi M, Campos S, Gómez KR, Ordoñez YM and Ancona DB 2013 Polyphenols, ascorbic acid and carotenoids contents and antioxidant properties of habanero pepper (Capsicum chinense) fruit. Food Nutr. Sci. 4 47–54

    Google Scholar 

  • Sasahara I, Furuhata Y, Iwasaki Y, Inoue N, Sato H, Watanabe T and Takahashi M 2010 Assessment of the biological similarity of three capsaicin analogs (capsinoids) found in non-pungent chili pepper (CH-19 sweet) fruits. Biosci. Biotechnol. Biochem. 74 274–278

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Jarret R, Russo V, Majetich G, Shimkus J, Bushway R and Perkins B 2009 Determination of capsinoids by HPLC-DAD in capsicum species. J. Agric. Food Chem. 57 3452–3457

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Fujioka T, Sumioka M, Furuichi Y, Hamada H and Watanabe T 2004 Effects of capsinoid on serum and liver lipids in hyperlipidemic rats. J. Nutr. Sci. Vitaminol. 50 351–355

  • Tierranegra-Garcia N, Salinas-Soto P, Torres-Pacheco I, Ocampo-Velazquez RV, Rico-Garcia E, Mendoza-Diaz SO, Feregrino-Perez AA, Mercado-Luna A, Vargas-Hernandez M, Soto-Zarazua GM and Guevara-Gonzalez RG 2011 Effect of foliar salicylic acid and methyl jasmonate applications on protection against pill-bugs in lettuce plants (Lactuca sativa). Phytoparasitica 39 137–144

    Article  CAS  Google Scholar 

  • Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Mason-D’Croz D, Paltsev S, Rolinski S, Tabeau A, van Meijl H, von Lampe M and Willenbockel D 2013 The future of food demand: understanding differences in global economic models. Agric. Econ. 45 51–67

    Article  Google Scholar 

  • Vargas-Hernández M, Torres-Pacheco I, Gautier F, Álvarez-Mayorga B, Cruz-Hernández A, García-Mier L, Jiménez-García SN, Ocampo-Velázquez RV, Feregrino-Perez AA and Guevara-Gonzalez RG 2017 Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosyst. -Int. J. Deal. Asp. Plant Biol. 151 269–275

  • Villegas D, Handford M, Alcalde JA and Perez-Donoso A 2016 Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression. Plant Physiol. Biochem. 104 125–1

    Article  CAS  PubMed  Google Scholar 

  • Wong GY and Gavva NR 2009 Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res. Rev. 60 267–277

    Article  CAS  PubMed  Google Scholar 

  • Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi F and Velasco R 2006 Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45 63–68

    CAS  Google Scholar 

  • Zhang Z, Zhang X, Yang Y, Wei, J-he, Meng H, Gao Z-h and Xu Y-h 2014 Hydrogen peroxide induces vessel occlusions and stimulates sesquiterpenes accumulation in stems of Aquilaria sinensis. Plant Growth Regul. 72 81–87

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC and Verpoorte R 2005 Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23 283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge CONACYT (FORDECYT-193512), Ciencia basica (178429), and CONACYT-OSEO (192660), for support this research. AYZ-P also acknowledges FORDECYT 193512 and Ciencia basica 178429, for grant support during the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G Guevara-González.

Additional information

[Zunun-Pérez AY, Guevara-Figueroa T, Jimenez-Garcia SN, Feregrino-Pérez AA, Gautier F and Guevara-González RG 2017 Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associated with capsinoids synthesis in Capsicum annuum L. J. Biosci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zunun-Pérez, A.Y., Guevara-Figueroa, T., Jimenez-Garcia, S.N. et al. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associated with capsinoids synthesis in Capsicum annuum L. . J Biosci 42, 245–250 (2017). https://doi.org/10.1007/s12038-017-9682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9682-9

Keywords

Navigation