Skip to main content
Log in

miRNAting control of DNA methylation

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its homologous proteins with siRNAs recruits the enzyme DRM2, which adds a methyl group at certain cytosine residues within the DNA sequence. In this study, it was found that de novo DNA methylation might be regulated by miRNAs through systematic targeting of the genes involved in DNA methylation. A comprehensive genome-wide and system-level study of miRNA targeting, transcription factors, DNA-methylation-causing genes and their target genes has provided a clear picture of an interconnected relationship of all these factors which regulate DNA methylation in Arabidopsis. The study has identified a DNA methylation system that is controlled by four different genes: IDN2, IDNl1, IDNl2 and DRM2. These four genes along with various critical transcription factors appear to be controlled by five different miRNAs. Altogether, DNA methylation appears to be a finely tuned process of opposite control systems of DNA-methylation-causing genes and certain miRNAs pitted against each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AGO:

argonaute

GFF:

General Feature Format

GO:

gene ontology

ncRNA:

non-coding RNA

NGS:

next-generation sequencing

RdDM:

RNA-dependent DNA methylation

RDR2:

RNA-dependent RNA polymerase 2

siRNA:

small interfering RNA

SVR:

support vector regression

TFBS:

transcription factor binding site

References

  • Ausin I, Greenberg MV, Simanshu DK, Hale CJ, Vashisht AA, Simon SA, Lee TF, Feng S, et al. 2012 INVOLVED IN DENOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 109 8374–8381

  • Ausin I, Mockler TC, Chory J and Jacobsen SE 2009 IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nat. Struct. Mol. Biol. 16 1325–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beauclair L, Yu A and Bouché N 2010 microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J. 62 454–462

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L and Voinnet O 2008 Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science 320 1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Chae L, Lee I, Shin J and Rhee SY 2012 Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15 177–184

    Article  CAS  PubMed  Google Scholar 

  • Chen K and Rajewsky N 2007 The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet 8 93–103

  • Chen L, Song Y, Li S, Zhang L, Zou C and Yu D 2012 The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819 120–128

    Article  CAS  PubMed  Google Scholar 

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L and Jaenisch R 1998 DNA hypomethylation leads to elevated mutation rates. Nature 395 89–93

    Article  CAS  PubMed  Google Scholar 

  • Cheon J, Park SY, Schulz B and Choe S 2010 Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 10 270

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, et al. 2008 Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature 452 215–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalakouras A and Wassenegger M 2013 Revisiting RNA-directed DNA methylation. RNA Biol. 16 103

  • Davin LB and Lewis NG 1992 Phenylpropanoid metabolism: biosynthesis of monolignols, lignans and neolignans, lignins and suberins (New York) pp 325–375

  • Dixon RA 2001 Natural products and plant disease resistance. Nature 411 843–847

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA and Paiva NL 1995 Stress-induced phenylpropanoid metabolism. Plant Cell 77 1085–1097

    Article  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z and Su Z 2010 agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38 W64–W70

  • Edgar R, Domrachev M and Lash AE 2002 Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30 207–210

  • Egger G, Liang G, Aparicio A and Jones PA 2004 Epigenetics in human disease and prospects for epigenetic therapy. Nature 429 457–463

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N and Filipowicz W 2010 Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79 351–379

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang S, Chen PY, Bostick M, Goll MG, Hetzel J, Jane J, et al. 2010 Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 107 8689–8694

  • Finnegan EJ, Peacock WJ and Dennis ES 2000 DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet Dev. 10 217–223

  • Gehring M and Henikoff S 2007 DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta. 1769 276–286

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB and Fischer RL 2006 DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124 495–506

    Article  CAS  PubMed  Google Scholar 

  • Gelato KA and Fischle W 2008 Role of histone modifications in defining chromatin structure and function. Biol. Chem. 389 353–363

    Article  CAS  PubMed  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA et al. 2008 Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26 941–946

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Le QH, Melayah D, et al. 2005 Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 110 229–241

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH et al. 2010 The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22 321–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He XJ, Chen T and Zhu JK 2011 Regulation and function of DNA methylation in plants and animals. Cell Res. 21 442–465

  • Herr AJ, Jensen MB, Dalmay T and Baulcombe DC 2005 RNA polymerase IV directs silencing of endogenous DNA. Science 308 118–120

    Article  CAS  PubMed  Google Scholar 

  • Heusipp G, Fälker S and Schmidt MA 2007 DNA adenine methylation and bacterial pathogenesis. Int. J. Med. Microbiol. 297 1–7

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y and Vert G 2012 Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nat. Cell Biol. 14 788–790

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T and Parcy F bZIP Research Group 2002 bZIP transcription factors in Arabidopsis. Trends Plant Sci. Mar. 7 106–111

  • Jenuwein T 2006 The epigenetic magic of histone lysine methylation. FEBS J. 273 3121–3135

  • Jha A, Mehra M and Shankar R 2011 The regulatory epicenter of miRNAs. J. Biosci. 36 621–638

  • Jha A and Shankar R 2011 Employing machine learning for reliable miRNA target identification in plants. BMC Genomics 12 636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PA and Laird PW 1999 Cancer epigenetics comes of age. Nat. Genet. 21 163–167

    Article  CAS  PubMed  Google Scholar 

  • Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, Herrero J, Keenan S, Kerhornou A et al. 2010 Ensembl Genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res. 38 D563–D569

  • Kidner CA and Martienssen RA 2005 The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 8 38–44

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ and Marra MA 2009 Circos: an information aesthetic for comparative genomics. Genome Res. 19 1639–1645

  • Lamesch P, Berardini TZ, Li D, et al. 2012 The Arabidopsis Information Resource TAIR: improved gene annotation and new tools. Nucleic Acids Res. 40 D1202–1210

  • Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O and Robaglia C 2009 Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 21 1762–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang JW, Rätsch G and Weigel D 2010 Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc. Natl. Acad. Sci. USA 107 17466–17473

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA and Ferreira PC 2010 Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 54 e10326

    Article  Google Scholar 

  • Massari ME and Murre C 2000 Helix-loop-helix proteins: Regulators of transcription in eukaryotic organisms. Mol. Cell Biol. 20 429–440

  • Ng HH and Bird A 1999 DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9158–163

  • Oliveros JC 2007 VENNY. An interactive tool for comparing lists with Venn Diagrams, http://bioinfogp.cnb.csic.es/tools/venny/index.html

  • Pandey SP and Somssich IE 2009 The role of WRKY transcription factors in plant immunity. Plant Physiol. 150 1648–1655

  • Patalano S, Hore TA, Reik W and Sumner S 2012 Shifting behaviour: epigenetic reprogramming in eusocial insects. Curr. Opin. Cell Biol. 24 367–373

  • Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LG, Rensing SA, Kersten B and Mueller-Roeber B 2010 PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 38 D822–D827

  • Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, et al. 2005 Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19 2030–2040

  • Riechmann JL and Meyerowitz EM 2002 The AP2/EREBP family of plant transcription factors. Trends Plant Sci. 7 106–111

  • Rodenhiser D and Mann M 2006 Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 174 341–348

    Article  PubMed Central  PubMed  Google Scholar 

  • Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, et al. 2012 A travel guide to Cytoscape plugins. Nat. Methods 9 1069–1076

  • Shankar R, Grover D, Brahmachari SK and Mukerji M 2004 Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependent mobile Alu elements. BMC Evol. Biol. 4 37

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, et al. 2012 Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24 875–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sims RJ 3rd, Nishioka K and Reinberg D 2003 Histone lysine methylation: a signature for chromatin function. Trends Genet. 19 629–639

  • Staiger D, Kaulen H and Schell J 1989 A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc. Natl. Acad. Sci. USA 86 6930–6934

  • Wassenegger M, Heimes S, Riedel L and Sänger HL 1994 RNA-directed de novo methylation of genomic sequences in plants, Cell 76 567–76

    Article  CAS  PubMed  Google Scholar 

  • Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M and Laird PW 2005 Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 33 6823–6836

  • Wierzbicki AT, Ream TS, Haag JR and Pikaard CS 2009 RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41 630–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L and Grotewold E 2011 AGRIS: Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res. 39 D1118–D1122

  • Zhang B, Pan X, Cobb GP and Anderson TA 2006 Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289 3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, et al. 2006 Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126 1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li YF, Sunkar R and Zhang W 2012 SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res. 40 e28

Download references

Acknowledgements

AJ is thankful to CSIR for his project fellowship. RS is thankful to INSA for his Indo-Australia Visiting Fellowship, during which this work was done. We are thankful to the open source community and all the researchers who provided their valuable data as an open source. We are grateful to Dr RD Singh, CSIR-IHBT, for his valuable inputs in editing this manuscript. Like most of our previous works, this work has also been done completely over open source operating system of Ubuntu Linux. We are thankful to the same Linux community. This study was funded by SERB India through grant number SR/FT/LS-97/2010 and CSIR - 12th Five Year Plan National Project Grant (BSC-0118). IHBT communication number for this MS is 3648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar.

Additional information

Corresponding editor: UTPAL NATH

[Jha A and Shankar R 2014 miRNAting control of DNA methylation. J. Biosci. 39 1–15] DOI 10.1007/s12038-014-9437-9

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/jun2014/supp/Jha.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A., Shankar, R. miRNAting control of DNA methylation. J Biosci 39, 365–380 (2014). https://doi.org/10.1007/s12038-014-9437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9437-9

Keywords

Navigation