Skip to main content
Log in

Orbital Mechanics near a Rotating Asteroid

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract.

This study investigates the different novel forms of the dynamical equations of a particle orbiting a rotating asteroid and the effective potential, the Jacobi integral, etc. on different manifolds. Nine new forms of the dynamical equations of a particle orbiting a rotating asteroid are presented, and the classical form of the dynamical equations has also been found. The dynamical equations with the potential and the effective potential in scalar form in the arbitrary body-fixed frame and the special body-fixed frame are presented and discussed. Moreover, the simplified forms of the effective potential and the Jacobi integral have been derived. The dynamical equation in coefficient-matrix form has been derived. Other forms of the dynamical equations near the asteroid are presented and discussed, including the Lagrange form, the Hamilton form, the symplectic form, the Poisson form, the Poisson-bracket form, the cohomology form, and the dynamical equations on Kähler manifold and another complex manifold. Novel forms of the effective potential and the Jacobi integral are also presented. The dynamical equations in scalar form and coefficient-matrix form can aid in the study of the dynamical system, the bifurcation, and the chaotic motion of the orbital dynamics of a particle near a rotating asteroid. The dynamical equations of a particle near a rotating asteroid are presented on several manifolds, including the symplectic manifold, the Poisson manifold, and complex manifolds, which may lead to novel methods of studying the motion of a particle in the potential field of a rotating asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Alberti, A., Vidal, C. 2007, Dynamics of a particle in a gravitational field of a homogeneous annulus disk, Celest. Mech. Dyn. Astron., 98(2), 75–93.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Balmino, G. 1994, Gravitational potential harmonics from the shape of a homogeneous body, Celest. Mech. Dyn. Astron., 60(3), 331–364.

    Article  ADS  MATH  Google Scholar 

  • Berndt, R. 1998, An Introduction to symplectic geometry, American Mathematical Society.

  • Blesa, F. 2006, Periodic orbits around simple shaped bodies, Monogr. Semin. Mat. García Galdeano. 33, 67–74.

    MathSciNet  Google Scholar 

  • Broucke, R. A., Elipe, A. 2005, The dynamics of orbits in a potential field of a solid circular ring, Regul. Chaotic Dyn., 10(2), 129–143.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Chappell, J. M., Chappell, M. J., Iqbal, A., Abbott, D. 2013, The gravity field of a cube, Phys. Int., 3, 50–57.

    Article  Google Scholar 

  • Descamps, P., Marchis, F., Berthier, J. 2010, Triplicity and physical characteristics of asteroid (216), Kleopatra. Icarus., 211(2), 1022–1033.

    Article  ADS  Google Scholar 

  • Elipe, A., Lara, M. 2003, A simple model for the chaotic motion around (433), Eros. J. Astron. Sci., 51(4), 391–404.

    MathSciNet  Google Scholar 

  • Fomenko, A. T. 1988, Symplectic geometry, Gordon and Breach Science Publishers.

  • Fritzsche, K., Grauert, H. 2002, From holomorphic functions to complex manifolds, Springer-Verlag.

  • Fukushima, T. 2010, Precise computation of acceleration due to uniform ring or disk, Celest. Mech. Dyn. Astron., 108(4), 339–356.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Garcia-Abdeslem, J. 2005, The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial, Geophysics, 70, 39–42.

    Article  ADS  Google Scholar 

  • Hu, W., Scheeres, D. J. 2002, Spacecraft motion about slowly rotating asteroids, J. Guid. Control. Dynam., 25(4), 765–775.

    Article  ADS  Google Scholar 

  • Hu, W., Scheeres, D. J. 2004, Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields, Planet. Space. Sci., 52(8), 685–692.

    Article  ADS  Google Scholar 

  • Hudson, R. S., Ostro, S. J. 1999, Physical model of asteroid 1620 Geographos from radar and optical data, Icarus, 140(2), 369–378.

    Article  ADS  Google Scholar 

  • Iorio, L. 2005, Is it possible to measure the Lense-Thirring effect on the orbits of the planets in the gravitational field of the Sun?, Astron. Astrophys., 431(1), 385–389.

    Article  ADS  MathSciNet  Google Scholar 

  • Iorio, L., Lichtenegger, H. I. M., Ruggiero, M. L., Corda, C. 2011, Phenomenology of the Lense–Thirring effect in the solar system, Astrophys. Space Sci., 331(2), 351–395.

    Article  ADS  MATH  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X. 2011, Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube, Astrophys. Space Sci., 333, 409–418.

    Article  ADS  MATH  Google Scholar 

  • Libermann, P., Marle, C. M. 1987, Symplectic geometry and analytical mechanics, D. Reidel Publishing Company.

  • Marsden, J. E., Ratiu, T. S. 1999, Introduction to mechanics and symmetry, Springer-Verlag.

  • Mufti, I. R. 2006a, Rapid determination of cube’s gravity field, Geophys. Prospect., 21, 724–735.

    Article  ADS  Google Scholar 

  • Muftim, I. R. 2006b, Iterative gravity modeling by using cubical blocks, Geophys. Prospect., 23, 163–198.

    Article  ADS  Google Scholar 

  • Neese, C., ed. 2004, Small Body Radar Shape Models V2.0. NASA Planetary Data System.

  • Ostro, S. J., Hudson, R. S., Nolan, M. C. 2000, Radar observations of asteroid 216, Kleopatra. Science, 288(5467), 836–839.

    Article  Google Scholar 

  • Riaguas, A., Elipe, A., Lara, M. 1999, Periodic orbits around a massive straight segment, Celest. Mech. Dyn. Astron. 73(1/4), 169–178.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ryabova, G. O. 2002, Asteroid 1620 Geographos: I. Rotation, Solar. Syst. Res., 36(2), 168–174.

    Article  ADS  Google Scholar 

  • Scheeres, D. J. 1994, Dynamics about uniformly rotating triaxial ellipsoids: applications to asteroids, Icarus, 110(2), 225–238.

    Article  ADS  Google Scholar 

  • Scheeres, D. J. 2012, Orbit mechanics about asteroids and comets, J. Guid. Control. Dynam., 35(3), 987–997.

    Article  MathSciNet  Google Scholar 

  • Scheeres, D. J., Ostro, S. J., Hudson, R. S., Werner, R. A. 1996, Orbits close to asteroid 4769, Castalia, Icarus, 121, 67–87.

    Article  ADS  Google Scholar 

  • Scheeres, D. J., Ostro, S. J., Hudson, R. S., DeJong, E. M., Suzuki, S. 1998, Dynamics of orbits close to asteroid 4179 Toutatis, Icarus, 132(1), 53–79.

    Article  ADS  Google Scholar 

  • Scheeres, D. J., Williams, B. G., Miller, J. K. 2000, Evaluation of the dynamic environment of an asteroid applications to 433 Eros, J. Guid. Control. Dynam., 23(3), 466–475.

    Article  ADS  Google Scholar 

  • Sternberg, S. 2012, Lectures on symplectic geometry, International Press & Tsinghua University Press.

  • Werner, R. 1994, The gravitational potential of a homogeneous polyhedron or don’t cut corners, Celest. Mech. Dyn. Astron., 59(3), 253–278.

    Article  ADS  MATH  Google Scholar 

  • Werner, R., Scheeres, D. J. 1996, Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia, Celest. Mech. Dyn. Astron., 65(3), 313–344.

    ADS  MathSciNet  Google Scholar 

  • Yu, Y., Baoyin, H. 2012a, Orbital dynamics in the vicinity of asteroid 216 Kleopatra, Astron. J., 143(3), 62–70.

    Article  ADS  Google Scholar 

  • Yu, Y., Baoyin, H. 2012b, Generating families of 3D periodic orbits about asteroids, Mon. Not. R. Astron. Soc., 427(1), 872–881.

    Article  ADS  Google Scholar 

  • Yu, Y., Baoyin, H. 2013, Resonant orbits in the vicinity of asteroid 216 Kleopatra, Astrophys. Space Sci., 343(1), 75–82.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11072122), the State Key Laboratory Foundation of Astronautic Dynamics (No. 2012ADL0202), and the National Basic Research Program of China (973 Program, 2012CB720000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Baoyin, H. Orbital Mechanics near a Rotating Asteroid. J Astrophys Astron 35, 17–38 (2014). https://doi.org/10.1007/s12036-014-9259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12036-014-9259-z

Key words.

Navigation