Skip to main content

Advertisement

Log in

Immunoproteasome Subunit Low Molecular Mass Peptide 2 (LMP2) Deficiency Ameliorates LPS/Aβ1-42-Induced Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 31 January 2024

This article has been updated

Abstract

Low molecular mass peptide 2 (LMP2) is the β1i subunit of immunoproteasome (iP) which plays a key role in neuroinflammatory responses, and inhibition of iP exhibits a high neuroprotective action against neurodegenerative diseases. Since neuroinflammation has been shown to be involved in the development and progression of Alzheimer’s disease (AD), the aim of this study was to evaluate the anti-inflammatory role of LMP2 deficiency in AD in vivo and in vitro. Here, we found that LMP2 was upregulated in the brains of 5 × FAD and APP/PS1 mice and increased with age in C57/BL6 mice. We showed that the lack of LMP2 significantly decreased NLRP3 expression and downstream cytokine release in microglia, resulting in partially blocking Aβ1-42- or LPS-induced inflammation in vivo and in vitro, which ameliorated cognitive deficits in aged rats and D-galactose + Aβ1-42-treated rats. These results suggest that LMP2 contributes to the regulation of LPS-or Aβ-driven innate immune responses by diminishing NLRP3 expression and clarify that inhibition of iP function may mediate the inflammatory-related cognitive phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used or analyzed during this study are available on reasonable request from the corresponding author (lycmellisa@126.com).

Change history

References

  1. Yeo IJ, Lee MJ, Baek A, Miller Z, Bhattarai D, Baek YM, Jeong HJ, Kim YK, Kim DE, Hong JT, Kim KB (2019) A dual inhibitor of the proteasome catalytic subunits LMP2 and Y attenuates disease progression in mouse models of Alzheimer’s disease. Sci Rep 9(1):18393. https://doi.org/10.1038/s41598-019-54846-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jung T, Grune T (2012) Structure of the proteasome. Prog Mol Biol Transl Sci 109:1–39. https://doi.org/10.1016/B978-0-12-397863-9.00001-8

    Article  CAS  PubMed  Google Scholar 

  3. Hudak RP, Mouritsen PB (1988) Improving the Army’s primary care delivery system. Mil Med 153(6):282–286

    Article  CAS  PubMed  Google Scholar 

  4. Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M (2015) The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol 33(4 Suppl 92):S74–S79

    PubMed  Google Scholar 

  5. De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164(4):603–615. https://doi.org/10.1016/j.cell.2015.12.056

    Article  CAS  PubMed  Google Scholar 

  6. Ebstein F, Kloetzel PM, Kruger E, Seifert U (2012) Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 69(15):2543–2558. https://doi.org/10.1007/s00018-012-0938-0

    Article  CAS  PubMed  Google Scholar 

  7. Fehling HJ, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265(5176):1234–1237. https://doi.org/10.1126/science.8066463

    Article  CAS  PubMed  Google Scholar 

  8. Aso E, Lomoio S, López-González I, Joda L, Carmona M, Fernández-Yagüe N, Moreno J, Juvés S, Pujol A, Pamplona R et al (2012) Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol 22:636–653. https://doi.org/10.1111/j.1750-3639.2011.00560.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, Dimayuga Smith V, Koot S, Mamber C, Jansen AH et al (2013) Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain. https://doi.org/10.1093/brain/awt083

  10. Giuliani F, Vernay A, Leuba G, Schenk F (2009) Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism. Brain Res Bull 80(4-5):302–308. https://doi.org/10.1016/j.brainresbull.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  11. Wagner LK, Gilling KE, Schormann E, Kloetzel PM, Heppner FL, Kruger E, Prokop S (2017) Immunoproteasome deficiency alters microglial cytokine response and improves cognitive deficits in Alzheimer’s disease-like APPPS1 mice. Acta Neuropathol Commun 5(1):52. https://doi.org/10.1186/s40478-017-0453-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85(3):534–548. https://doi.org/10.1016/j.neuron.2014.12.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhattarai D, Lee MJ, Baek A, Yeo IJ, Miller Z, Baek YM, Lee S, Kim DE, Hong JT, Kim KB (2020) LMP2 Inhibitors as a potential treatment for Alzheimer’s disease. J Med Chem 63(7):3763–3783. https://doi.org/10.1021/acs.jmedchem.0c00416

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Wang Y, Yao N, Lin Z (2022) Immunoproteasome modulates NLRP3 inflammasome-mediated neuroinflammation under cerebral ischaemia and reperfusion conditions. J Cell Mol Med 26(2):462–474. https://doi.org/10.1111/jcmm.17104

    Article  CAS  PubMed  Google Scholar 

  15. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13). https://doi.org/10.3390/ijms20133328

  16. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK (2021) An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 18(5):1141–1160. https://doi.org/10.1038/s41423-021-00670-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17(8):588–606. https://doi.org/10.1038/nrd.2018.97

    Article  CAS  PubMed  Google Scholar 

  18. Jiang J, Wang Z, Liang X, Nie Y, Chang X, Xue H, Li S, Min C (2019) Intranasal MMI-0100 attenuates Abeta(1-42)- and LPS-induced neuroinflammation and memory impairments via the MK2 signaling pathway. Front Immunol 10:2707. https://doi.org/10.3389/fimmu.2019.02707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Y, Zhang H, Chen X, Liu Y (2021) All-trans retinoic acid reduces mammalian target of rapamycin via a Sirtuin1-dependent mechanism in neurons. Neuroreport 32(12):975–982. https://doi.org/10.1097/WNR.0000000000001672

    Article  CAS  PubMed  Google Scholar 

  20. Yan T, Liang J, Gao J, Wang L, Fujioka H, Alzheimer Disease Neuroimaging I, Zhu X, Wang X (2020) FAM222A encodes a protein which accumulates in plaques in Alzheimer’s disease. Nat Commun 11(1):411. https://doi.org/10.1038/s41467-019-13962-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Westergard T, Rothstein JD (2020) Astrocyte diversity: current insights and future directions. Neurochem Res 45(6):1298–1305. https://doi.org/10.1007/s11064-020-02959-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. https://doi.org/10.1038/nature02263

    Article  CAS  PubMed  Google Scholar 

  23. Wu Y, Wu H, Zeng J, Pluimer B, Dong S, Xie X, Guo X, Ge T, Liang X, Feng S, Yan Y, Chen JF, Sta Maria N, Ma Q, Gomez-Pinilla F, Zhao Z (2021) Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 9(1):74. https://doi.org/10.1186/s40478-021-01178-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Mitchell AA (2007) Risk factors for persistent pulmonary hypertension of the newborn. Pediatrics 120(2):e272–e282. https://doi.org/10.1542/peds.2006-3037

    Article  PubMed  Google Scholar 

  25. Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Fornai F (2019) The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 102:308–317. https://doi.org/10.1016/j.neubiorev.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  26. Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C (2006) Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 27(1):54–66. https://doi.org/10.1016/j.neurobiolaging.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  27. Hanslik KL, Ulland TK (2020) The role of microglia and the Nlrp3 inflammasome in Alzheimer’s disease. Front Neurol 11:570711. https://doi.org/10.3389/fneur.2020.570711

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dennissen FJA, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 96:190–207. https://doi.org/10.1016/j.pneurobio.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  29. Umbayev B, Askarova S, Almabayeva A, Saliev T, Masoud AR, Bulanin D (2020) Galactose-induced skin aging: the role of oxidative stress. Oxid Med Cell Longev 2020:7145656. https://doi.org/10.1155/2020/7145656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song X, Bao M, Li D, Li YM (1999) Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108(3):239–251. https://doi.org/10.1016/s0047-6374(99)00022-6

    Article  CAS  PubMed  Google Scholar 

  31. Song L, Pei L, Yao S, Wu Y, Shang Y (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 9(11):63. https://doi.org/10.3389/fncel.2017.00063

    Article  CAS  Google Scholar 

  32. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, Tardivel A, Heuschling P, Dostert C (2015) NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10(6):e0130624. https://doi.org/10.1371/journal.pone.0130624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basler M, Lindstrom MM, LaStant JJ, Bradshaw JM, Owens TD, Schmidt C, Maurits E, Tsu C, Overkleeft HS, Kirk CJ, Langrish CL, Groettrup M (2018) Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. EMBO Rep 19(12). https://doi.org/10.15252/embr.201846512

  34. Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P (2021) Relationship between amyloid-beta deposition and blood-brain barrier dysfunction in Alzheimer’s disease. Front Cell Neurosci 15:695479. https://doi.org/10.3389/fncel.2021.695479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 84(3):647–654. https://doi.org/10.1002/jnr.20899

    Article  CAS  PubMed  Google Scholar 

  36. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008. https://doi.org/10.3389/fphar.2019.01008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS (2022) Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27(10):3194. https://doi.org/10.3390/molecules27103194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cortés N, Andrade V, Guzmán-Martínez L, Estrella M, Maccioni RB (2018) Neuroimmune tau mechanisms: their role in the progression of neuronal degeneration. Int J Mol Sci 19(4):956. https://doi.org/10.3390/ijms19040956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin R, Fu X, Lei C, Yang M, Qiu Y, Lei B (2019) Intravitreal injection of amyloid β1-42 activates the complement system and induces retinal inflammatory responses and malfunction in mouse. Adv Exp Med Biol 1185:347–352. https://doi.org/10.1007/978-3-030-27378-1-57

    Article  CAS  PubMed  Google Scholar 

  40. Sun J, Huang P, Liang J, Li J, Shen M, She X, Feng Y, Luo X, Liu T, Sun X (2017) Cooperation of Rel family members in regulating Aβ1-40-mediated pro-inflammatory cytokine secretion by retinal pigment epithelial cells. Cell Death Dis 8(10):e3115. https://doi.org/10.1038/cddis.2017.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lonnemann N, Hosseini S, Marchetti C, Skouras DB, Stefanoni D, D’Alessandro A, Dinarello CA, Korte M (2020) The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 117(50):32145–32154. https://doi.org/10.1073/pnas.2009680117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Dong Z, Song W (2020) NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct Target Ther 5(1):37. https://doi.org/10.1038/s41392-020-0145-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ahmad MH, Fatima M, Mondal AC (2019) Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: rational insights for the therapeutic approaches. J Clin Neurosci 59:6–11. https://doi.org/10.1016/j.jocn.2018.10.034

    Article  CAS  PubMed  Google Scholar 

  45. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16(5):508–518. https://doi.org/10.2174/1570159X15666170720095240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 27(4):663–677. https://doi.org/10.1007/s10787-019-00580-x

    Article  PubMed  Google Scholar 

  47. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  49. Feng YS, Tan ZX, Wu LY, Dong F, Zhang F (2020) The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev 64:101192. https://doi.org/10.1016/j.arr.2020.101192

    Article  CAS  PubMed  Google Scholar 

  50. Milner MT, Maddugoda M, Gotz J, Burgener SS, Schroder K (2021) The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr Opin Immunol 68:116–124. https://doi.org/10.1016/j.coi.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  51. Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T (2021) Salidroside ameliorates Alzheimer’s disease by targeting NLRP3 inflammasome-mediated pyroptosis. Front Aging Neurosci 13:809433. https://doi.org/10.3389/fnagi.2021.809433

    Article  CAS  PubMed  Google Scholar 

  52. Shen H, Guan Q, Zhang X, Yuan C, Tan Z, Zhai L, Hao Y, Gu Y, Han C (2020) New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry 100:109884. https://doi.org/10.1016/j.pnpbp.2020.109884

    Article  CAS  PubMed  Google Scholar 

  53. Zheng J, Yao L, Zhou Y, Gu X, Wang C, Bao K, Sun Y, Hong M (2021) A novel function of NLRP3 independent of inflammasome as a key transcription factor of IL-33 in epithelial cells of atopic dermatitis. Cell Death Dis 12(10):871. https://doi.org/10.1038/s41419-021-04159-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Mr. Longkun Zhu for the assistance in the preparation of the manuscript.

Funding

This work was supported by the grants from Fujian Natural Science Foundation (Grant No. 2018 J01836 to Yingchun Liu and Grant No. 2021J01679 to Li Li).

Author information

Authors and Affiliations

Authors

Contributions

Yingchun Liu designed all studies; material preparation, data collection, and analysis were performed by Yueting Guo, Shiyi Wang, Li Li, Hengce Zhang, Xiaoyang Chen, and Zihan Huang. The first draft of the manuscript was written by Yueting Guo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yingchun Liu.

Ethics declarations

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Committee of Fujian Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3559 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, S., Li, L. et al. Immunoproteasome Subunit Low Molecular Mass Peptide 2 (LMP2) Deficiency Ameliorates LPS/Aβ1-42-Induced Neuroinflammation. Mol Neurobiol 61, 28–41 (2024). https://doi.org/10.1007/s12035-023-03564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03564-9

Keywords

Navigation