Skip to main content

Advertisement

Log in

Therapeutic Potential of a Combination of Electroacupuncture and TrkB-Expressing Mesenchymal Stem Cells for Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We prepared and grafted tropomyosin receptor kinase B (TrkB) gene-transfected mesenchymal stem cells (TrkB-MSCs) into the ischemic penumbra and investigated whether electroacupuncture (EA) treatment could promote functional recovery from ischemic stroke. For the behavioral test, TrkB-MSCs+EA resulted in significantly improved motor function compared to that obtained with MSCs+EA or TrkB-MSCs alone. At 30 days after middle cerebral artery occlusion (MCAO), the largest number of grafted MSCs was detected in the TrkB-MSC+EA group. Some differentiation into immature neuroblasts and astrocytes was detected; however, only a few mature neuron-like cells were found. Compared to other treatments, TrkB-MSCs+EA upregulated the expression of mature brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) and induced the activation of TrkB receptor and its transcription factor cAMP response element-binding protein (CREB). At 60 days after MCAO, EA highly promoted the differentiation of TrkB-MSCs into mature neuron-like cells compared to the effect in MSCs. A selective TrkB antagonist, ANA-12, reverted the effect of TrkB-MSCs+EA in motor function recovery and survival of grafted MSCs. Our results suggest that EA combined with grafted TrkB-MSCs promotes the expression of BDNF and NT4, induces the differentiation of TrkB-MSCs, and improves motor function. TrkB-MSCs could serve as effective therapeutic agents for ischemic stroke if used in combination with BDNF/NT4-inducing therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

BMP:

Bone morphogenetic protein

CREB:

cAMP response element-binding protein

DAPI:

4′,6-Diamidino-2-phenylindole

Dcx:

Doublecortin

EA:

Electroacupuncture

FGF:

Fibroblast growth factor

GFAP:

Glial fibrillary acidic protein

MSCs:

Mesenchymal stem cells

NeuN:

Neuronal nuclei

NTFs:

Neurotrophic factors

NT4:

Neurotrophin-4/5

TrkB:

Tropomyosin receptor kinase B

VEGF:

Vascular endothelial growth factor

References

  1. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr, American Heart Association Stroke C (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40(8):2945–2948. https://doi.org/10.1161/STROKEAHA.109.192535

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368. https://doi.org/10.1038/nn.2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burns TC, Steinberg GK (2011) Stem cells and stroke: opportunities, challenges and strategies. Expert Opin Biol Ther 11(4):447–461. https://doi.org/10.1517/14712598.2011.552883

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M (2010) Stem cell mediation of functional recovery after stroke in the rat. PLoS One 5(9):e12779. https://doi.org/10.1371/journal.pone.0012779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Chopp M (2013) Cell-based therapy for ischemic stroke. Expert Opin Biol Ther 13(9):1229–1240. https://doi.org/10.1517/14712598.2013.804507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C (2013) Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res 35(3):320–328. https://doi.org/10.1179/1743132812Y.0000000151

    Article  CAS  PubMed  Google Scholar 

  7. Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O (2013) Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis 52:191–203. https://doi.org/10.1016/j.nbd.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  8. Wyse RD, Dunbar GL, Rossignol J (2014) Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 15(2):1719–1745. https://doi.org/10.3390/ijms15021719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishizaka S, Horie N, Satoh K, Fukuda Y, Nishida N, Nagata I (2013) Intra-arterial cell transplantation provides timing-dependent cell distribution and functional recovery after stroke. Stroke 44(3):720–726. https://doi.org/10.1161/STROKEAHA.112.677328

    Article  PubMed  Google Scholar 

  10. Smith HK, Gavins FN (2012) The potential of stem cell therapy for stroke: is PISCES the sign? FASEB J 26(6):2239–2252. https://doi.org/10.1096/fj.11-195719

    Article  CAS  PubMed  Google Scholar 

  11. Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, Saito H, Takemoto H et al (2015) Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabil Neural Repair 29(1):80–89. https://doi.org/10.1177/1545968314525856

  12. Kim YS, Noh MY, Cho KA, Kim H, Kwon MS, Kim KS, Kim J, Koh SH et al (2015) Hypoxia/reoxygenation-preconditioned human bone marrow-derived mesenchymal stromal cells rescue ischemic rat cortical neurons by enhancing trophic factor release. Mol Neurobiol 52(1):792–803. https://doi.org/10.1007/s12035-014-8912-5

  13. Lu H, Liu X, Zhang N, Zhu X, Liang H, Sun L, Cheng Y (2016) Neuroprotective effects of brain-derived neurotrophic factor and noggin-modified bone mesenchymal stem cells in focal cerebral ischemia in rats. J Stroke Cerebrovasc Dis 25(2):410–418. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.013

    Article  PubMed  Google Scholar 

  14. Yang A, Wu HM, Tang JL, Xu L, Yang M, Liu GJ (2016) Acupuncture for stroke rehabilitation. Cochrane Database Syst Rev 8:CD004131. https://doi.org/10.1002/14651858.CD004131.pub3

    Article  Google Scholar 

  15. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92(6):692–699. https://doi.org/10.1161/01.RES.0000063425.51108.8D

  16. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N (2009) Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res 3(1):63–70. https://doi.org/10.1016/j.scr.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  17. Savitz SI, Chopp M, Deans R, Carmichael T, Phinney D, Wechsler L, Participants S (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42(3):825–829. https://doi.org/10.1161/STROKEAHA.110.601914

    Article  PubMed  Google Scholar 

  18. Manni L, Albanesi M, Guaragna M, Barbaro Paparo S, Aloe L (2010) Neurotrophins and acupuncture. Auton Neurosci 157(1–2):9–17. https://doi.org/10.1016/j.autneu.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  19. Shin HK, Lee SW, Choi BT (2017) Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem Pharmacol 141:132–142. https://doi.org/10.1016/j.bcp.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  20. Tao J, Zheng Y, Liu W, Yang S, Huang J, Xue X, Shang G, Wang X et al (2016) Electro-acupuncture at LI11 and ST36 acupoints exerts neuroprotective effects via reactive astrocyte proliferation after ischemia and reperfusion injury in rats. Brain Res Bull 120:14–24. https://doi.org/10.1016/j.brainresbull.2015.10.011

  21. Cheng CY, Lin JG, Su SY, Tang NY, Kao ST, Hsieh CL (2014) Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemia in rats. BMC Complement Altern Med 14:92. https://doi.org/10.1186/1472-6882-14-92

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim YR, Kim HN, Ahn SM, Choi YH, Shin HK, Choi BT (2014) Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One 9(2):e90000. https://doi.org/10.1371/journal.pone.0090000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Choi KH, Jang YJ, Kim HN, Bae SS, Choi BT, Shin HK (2013) Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1alpha in mice. BMC Complement Altern Med 13:22. https://doi.org/10.1186/1472-6882-13-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahn SM, Kim YR, Kim HN, Shin YI, Shin HK, Choi BT (2016) Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion. Sci Rep 6:28646. https://doi.org/10.1038/srep28646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamaguchi S, Kuroda S, Kobayashi H, Shichinohe H, Yano S, Hida K, Shinpo K, Kikuchi S et al (2006) The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)—a preliminary study using microarray analysis. Brain Res 1087(1):15–27. https://doi.org/10.1016/j.brainres.2006.02.127

  26. Heo H, Yoo M, Han D, Cho Y, Joung I, Kwon YK (2013) Upregulation of TrkB by forskolin facilitated survival of MSC and functional recovery of memory deficient model rats. Biochem Biophys Res Commun 431(4):796–801. https://doi.org/10.1016/j.bbrc.2012.12.122

    Article  CAS  PubMed  Google Scholar 

  27. Ana-Maria B CA, Valerica T (2017) Current stage and future perspective of stem cell therapy in ischemic stroke. J Stem Cell Res Ther 7

  28. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O (2006) Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37(9):2361–2367. https://doi.org/10.1161/01.STR.0000236025.44089.e1

    Article  CAS  PubMed  Google Scholar 

  30. Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD (2007) Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134(24):4369–4380. https://doi.org/10.1242/dev.008227

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  32. Tzeng HH, Hsu CH, Chung TH, Lee WC, Lin CH, Wang WC, Hsiao CY, Leu YW et al (2015) Cell signaling and differential protein expression in neuronal differentiation of bone marrow mesenchymal stem cells with hypermethylated Salvador/Warts/Hippo (SWH) pathway genes. PLoS One 10(12):e0145542. https://doi.org/10.1371/journal.pone.0145542

  33. Tanna T, Sachan V (2014) Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9(6):513–521

    Article  CAS  PubMed  Google Scholar 

  34. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40(7):609–619. https://doi.org/10.1038/sj.bmt.1705757

    Article  CAS  PubMed  Google Scholar 

  35. Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE (2011) Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29(2):169–178. https://doi.org/10.1002/stem.570

    Article  CAS  PubMed  Google Scholar 

  36. Yang Z, Zhu L, Li F, Wang J, Wan H, Pan Y (2014) Bone marrow stromal cells as a therapeutic treatment for ischemic stroke. Neurosci Bull 30(3):524–534. https://doi.org/10.1007/s12264-013-1431-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Atwal JK, Massie B, Miller FD, Kaplan DR (2000) The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27(2):265–277

    Article  CAS  PubMed  Google Scholar 

  38. Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28(1):5–11. https://doi.org/10.1016/j.tins.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  39. Lim JY, Park SI, Kim SM, Jun JA, Oh JH, Ryu CH, Jeong CH, Park SH et al (2011) Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and beta-catenin phosphorylation and following transplantation into the developing brain. Cell Transplant 20(11–12):1855–1866. https://doi.org/10.3727/096368910X557236

  40. Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28(8):1446–1455. https://doi.org/10.1002/stem.459

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104. https://doi.org/10.1016/j.ymthe.2004.09.020

  42. Ding Y, Zhang RY, He B, Liu Z, Zhang K, Ruan JW, Ling EA, Wu JL et al (2015) Combination of electroacupuncture and grafted mesenchymal stem cells overexpressing TrkC improves remyelination and function in demyelinated spinal cord of rats. Sci Rep 5:9133. https://doi.org/10.1038/srep09133

  43. Endres M, Fan G, Hirt L, Fujii M, Matsushita K, Liu X, Jaenisch R, Moskowitz MA (2000) Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J Cereb Blood Flow Metab 20(1):139–144. https://doi.org/10.1097/00004647-200001000-00018

    Article  CAS  PubMed  Google Scholar 

  44. Fan G, Egles C, Sun Y, Minichiello L, Renger JJ, Klein R, Liu G, Jaenisch R (2000) Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nat Neurosci 3(4):350–357. https://doi.org/10.1038/73921

    Article  CAS  PubMed  Google Scholar 

  45. Albers KM, Davis BM (2007) The skin as a neurotrophic organ. Neuroscientist 13(4):371–382. https://doi.org/10.1177/10738584070130040901

    Article  CAS  PubMed  Google Scholar 

  46. Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A (2004) Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 26(3):470–480. https://doi.org/10.1016/j.mcn.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  47. Finkbeiner S (2000) CREB couples neurotrophin signals to survival messages. Neuron 25(1):11–14

    Article  CAS  PubMed  Google Scholar 

  48. Huang SXL, Sun Y, Wu T, Wang K, Li G (2015) An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat 3:26–33

    Article  PubMed  Google Scholar 

  49. Franklin KBJPG (2007) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego, CA

    Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2014R1A5A2009936). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2015R1A2A2A03006712).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to this work. S.M.A. and B.T.C. conceived and designed the experiments; S.M.A., Y.R.K., and S.Y.L. performed the experiments; S.M.A., Y.I.S., K.T.H., H.K.S., and B.T.C. analyzed the data; and S.M.A. and B.T.C. wrote the manuscript.

Corresponding author

Correspondence to Byung Tae Choi.

Ethics declarations

The study was approved by the Pusan National University Animal Care and Use Committee in accordance with the National Institutes of Health Guidelines (Approval No. PNU-2017-1448).

Conflict of Interest

The authors declare that there are no competing interests.

Electronic supplementary material

Supplemental information includes the results of the passive avoidance test and immunofluorescence staining.

ESM 1

(PDF 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.M., Kim, Y.R., Shin, YI. et al. Therapeutic Potential of a Combination of Electroacupuncture and TrkB-Expressing Mesenchymal Stem Cells for Ischemic Stroke. Mol Neurobiol 56, 157–173 (2019). https://doi.org/10.1007/s12035-018-1067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1067-z

Keywords

Navigation