Skip to main content

Advertisement

Log in

Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America 93 (25):14895–14900

  2. Gage FH (2000) Mammalian neural stem cells. Science (New York, NY) 287(5457):1433–1438

    Article  CAS  Google Scholar 

  3. Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America 98 (8):4752–4757. doi:10.1073/pnas.081074998

  4. Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172(1):1–16. doi:10.1006/exnr.2001.7768

    Article  CAS  PubMed  Google Scholar 

  5. Moulton DG (1974) Dynamics of cell populations in the olfactory epithelium. Ann N Y Acad Sci 237(0):52–61

    Article  CAS  PubMed  Google Scholar 

  6. Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8(1):1–18

    Article  CAS  PubMed  Google Scholar 

  7. Roisen FJ, Klueber KM, Lu CL, Hatcher LM, Dozier A, Shields CB, Maguire S (2001) Adult human olfactory stem cells. Brain Res 890(1):11–22

    Article  CAS  PubMed  Google Scholar 

  8. Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C et al (2005) Multipotent stem cells from adult olfactory mucosa. Developmental dynamics : an official publication of the American Association of Anatomists 233(2):496–515. doi:10.1002/dvdy.20360

    Article  Google Scholar 

  9. Murrell W, Sanford E, Anderberg L, Cavanagh B, Mackay-Sim A (2009) Olfactory stem cells can be induced to express chondrogenic phenotype in a rat intervertebral disc injury model. The spine journal : official journal of the North American Spine Society 9(7):585–594. doi:10.1016/j.spinee.2009.02.011

    Article  Google Scholar 

  10. Keenan TM, Nelson AD, Grinager JR, Thelen JC, Svendsen CN (2010) Real time imaging of human progenitor neurogenesis. PLoS One 5(10):e13187. doi:10.1371/journal.pone.0013187

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, NY) 255(5052):1707–1710

    Article  CAS  Google Scholar 

  12. Othman M, Lu C, Klueber K, Winstead W, Roisen F (2005) Clonal analysis of adult human olfactory neurosphere forming cells. Biotechnic & histochemistry : official publication of the Biological Stain Commission 80(5–6):189–200. doi:10.1080/10520290500469777

    Article  CAS  Google Scholar 

  13. Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S et al (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem cells (Dayton, Ohio) 18(4):295–300. doi:10.1634/stemcells.18-4-295

    Article  CAS  Google Scholar 

  14. Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400(4):469–486

    Article  CAS  PubMed  Google Scholar 

  15. Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10(6):720–726. doi:10.1038/nn1882

    Article  CAS  PubMed  Google Scholar 

  16. Benitez-King G, Riquelme A, Ortiz-Lopez L, Berlanga C, Rodriguez-Verdugo MS, Romo F, Calixto E, Solis-Chagoyan H et al (2011) A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 201(1):35–45. doi:10.1016/j.jneumeth.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  17. Wolozin B, Zheng B, Loren D, Lesch KP, Lebovics RS, Lieberburg I, Sunderland T (1992) Beta/A4 domain of APP: antigenic differences between cell lines. J Neurosci Res 33(2):189–195. doi:10.1002/jnr.490330202

    Article  CAS  PubMed  Google Scholar 

  18. Abrams MT, Kaufmann WE, Rousseau F, Oostra BA, Wolozin B, Taylor CV, Lishaa N, Morel ML et al (1999) FMR1 gene expression in olfactory neuroblasts from two males with fragile X syndrome. Am J Med Genet 82(1):25–30

    Article  CAS  PubMed  Google Scholar 

  19. Feron F, Perry C, Hirning MH, McGrath J, Mackay-Sim A (1999) Altered adhesion, proliferation and death in neural cultures from adults with schizophrenia. Schizophr Res 40(3):211–218

    Article  CAS  PubMed  Google Scholar 

  20. Arnold SE, Han LY, Moberg PJ, Turetsky BI, Gur RE, Trojanowski JQ, Hahn CG (2001) Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry 58(9):829–835

    Article  CAS  PubMed  Google Scholar 

  21. Ronnett GV, Leopold D, Cai X, Hoffbuhr KC, Moses L, Hoffman EP, Naidu S (2003) Olfactory biopsies demonstrate a defect in neuronal development in Rett’s syndrome. Ann Neurol 54(2):206–218. doi:10.1002/ana.10633

    Article  CAS  PubMed  Google Scholar 

  22. McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, Hayward NK, McGrath JJ et al (2006) Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res 82(2–3):163–173. doi:10.1016/j.schres.2005.10.012

    Article  PubMed  Google Scholar 

  23. Pacey L, Stead S, Gleave J, Tomczyk K, Doering L (2006) Neural stem cell culture: neurosphere generation, microscopical analysis and cryopreservation

  24. Kirkham DL, Pacey LK, Axford MM, Siu R, Rotin D, Doering LC (2006) Neural stem cells from protein tyrosine phosphatase sigma knockout mice generate an altered neuronal phenotype in culture. BMC Neurosci 7:50. doi:10.1186/1471-2202-7-50

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wetzig A, Mackay-Sim A, Murrell W (2011) Characterization of olfactory stem cells. Cell Transplant 20(11–12):1673–1691. doi:10.3727/096368911x576009

    Article  PubMed  Google Scholar 

  26. Mothe AJ, Zahir T, Santaguida C, Cook D, Tator CH (2011) Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation. PLoS One 6(11):e27079. doi:10.1371/journal.pone.0027079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giachino C, Basak O, Taylor V (2009) Isolation and manipulation of mammalian neural stem cells in vitro. Methods Mol Biol 482:143–158. doi:10.1007/978-1-59745-060-7_9

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  CAS  PubMed  Google Scholar 

  29. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441(7097):1075–1079. doi:10.1038/nature04957

    Article  CAS  PubMed  Google Scholar 

  30. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  31. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98–104. doi:10.1038/35102160

    Article  CAS  PubMed  Google Scholar 

  32. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science (New York, NY) 287(5457):1427–1430

    Article  CAS  Google Scholar 

  33. Palacios-Reyes C, Espinosa A, Contreras A, Ordonez R, Hidalgo-Miranda A, Rubio-Gayosso I, Garcia-Alonso P, Benitez-King G et al (2013) Williams’ neural stem cells: new model for insight into microRNA dysregulation. Front Biosci 5:1057–1073

    Google Scholar 

  34. Goldstein BJ, Hare JM, Lieberman S, Casiano R (2013) Adult human nasal mesenchymal stem cells have an unexpected broad anatomic distribution. International forum of allergy & rhinology 3(7):550–555. doi:10.1002/alr.21153

    Article  Google Scholar 

  35. Calof AL, Chikaraishi DM (1989) Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro. Neuron 3(1):115–127

    Article  CAS  PubMed  Google Scholar 

  36. Hahn CG, Han LY, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, Arnold SE (2005) In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol 483(2):154–163. doi:10.1002/cne.20424

    Article  PubMed  Google Scholar 

  37. Holbrook EH, Szumowski KE, Schwob JE (1995) An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J Comp Neurol 363(1):129–146. doi:10.1002/cne.903630111

    Article  CAS  PubMed  Google Scholar 

  38. Marshall CT, Guo Z, Lu C, Klueber KM, Khalyfa A, Cooper NG, Roisen FJ (2005) Human adult olfactory neuroepithelial derived progenitors retain telomerase activity and lack apoptotic activity. Brain Res 1045(1–2):45–56. doi:10.1016/j.brainres.2005.03.041

    Article  CAS  PubMed  Google Scholar 

  39. Theriault FM, Nuthall HN, Dong Z, Lo R, Barnabe-Heider F, Miller FD, Stifani S (2005) Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(8):2050–2061. doi:10.1523/jneurosci.5108-04.2005

    Article  CAS  Google Scholar 

  40. Barraud P, He X, Zhao C, Ibanez C, Raha-Chowdhury R, Caldwell MA, Franklin RJ (2007) Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci 26(12):3345–3357. doi:10.1111/j.1460-9568.2007.05950.x

    Article  PubMed  Google Scholar 

  41. Parati EA, Bez A, Ponti D, Sala S, Pozzi S, Pagano SF (2003) Neural stem cells. Biological features and therapeutic potential in Parkinson’s disease. J Neurosurg Sci 47(1):8–17

    CAS  PubMed  Google Scholar 

  42. Marsh S, Blurton-Jones M (2017) Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int. doi:10.1016/j.neuint.2017.02.006

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by Fondo de Investigación en Salud, IMSS (FIS; grant FIS/IMSS/PROT/G11/948), México. We thank Héctor Solis Chagoyan for his help to prepare part of the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Ma. Ordoñez-Razo.

Ethics declarations

After the informed consent form was obtained for the inclusion in this study, nasal exfoliates were obtained from 22 healthy adult individuals [10 females and 12 males; 32.5 years old (SEM ± 3.23)]. This study was approved by the Scientific and Ethics Committee of Health Research from the Instituto Mexicano del Seguro Social, Siglo XXI in accordance with the Declaration of Helsinki, 1964.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Vaca, A.L., Benitez-King, G., Ruiz, V. et al. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells. Mol Neurobiol 55, 2516–2523 (2018). https://doi.org/10.1007/s12035-017-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0500-z

Keywords

Navigation