Skip to main content
Log in

The Role of GluN2A in Cerebral Ischemia: Promoting Neuron Death and Survival in the Early Stage and Thereafter

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over-activation of NMDA receptors is a crucial step required for brain damage following a stroke. Although clinical trials for NMDA receptor blockers have failed, the role of GluN2A subunit in cerebral ischemia has been extensively evaluated in recent years. However, the effect of GluN2A on neuron damage induced by cerebral ischemia remains a matter of controversy. The underlying reason may be that GluN2A mediates both pro-death and pro-survival effects. These two effects result from two mutually excluding pathways, Ca2+ overload-dependent pro-death signaling and C-terminal-dependent pro-survival signaling, respectively. During the early stage of cerebral ischemia, over-activation of GluN2A plays an important role in Ca2+ overload. Under this condition, pro-death signaling might overcome pro-survival signaling. When GluN2A activity is restored almost to the normal level over time, pro-survival signaling of GluN2A will be dominant. The hypothesis that GluN2A promotes neuron death and survival in the early stage of cerebral ischemia and thereafter will be introduced in detail in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sun Y, Cheng X, Zhang L, Hu J, Chen Y, Zhan L, Gao Z (2016) The functional and molecular properties, physiological functions, and pathophysiological roles of GluN2A in the central nervous system. Mol Neurobiol.

  2. Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K et al (2012) The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 74(3):543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Birmingham K (2002) Future of neuroprotective drugs in doubt. Nat Med 8(1):5

    Article  CAS  PubMed  Google Scholar 

  4. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386

    Article  CAS  PubMed  Google Scholar 

  5. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  6. Glasgow NG, Siegler Retchless B, Johnson JW (2015) Molecular bases of NMDA receptor subtype-dependent properties. J Physiol 593(1):83–95

    Article  CAS  PubMed  Google Scholar 

  7. Martin HG, Wang YT (2010) Blocking the deadly effects of the NMDA receptor in stroke. Cell 140(2):174–176

    Article  CAS  PubMed  Google Scholar 

  8. Ferrer-Montiel AV, Merino JM, Blondelle SE, Perez-Paya E, Houghten RA, Montal M (1998) Selected peptides targeted to the NMDA receptor channel protect neurons from excitotoxic death. Nat Biotechnol 16(3):286–291

    Article  CAS  PubMed  Google Scholar 

  9. Morikawa E, Mori H, Kiyama Y, Mishina M, Asano T, Kirino T (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor. J Neurosci 18(23):9727–9732

    CAS  PubMed  Google Scholar 

  10. von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Kohr G, Seeburg PH, Monyer H (2007) Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 53(1):10–17

    Article  Google Scholar 

  11. Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB (2009) Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci U S A 106(24):9854–9859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brewer LD, Thibault O, Staton J, Thibault V, Rogers JT, Garcia-Ramos G, Kraner S, Landfield PW et al (2007) Increased vulnerability of hippocampal neurons with age in culture: temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Res 1151:20–31

    Article  CAS  PubMed  Google Scholar 

  13. Alex AB, Saunders GW, Dalpe-Charron A, Reilly CA, Wilcox KS (2011) CGX-1007 prevents excitotoxic cell death via actions at multiple types of NMDA receptors. Neurotoxicology 32(4):392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013) Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 288(33):24151–24159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6(10):1039–1047

    Article  CAS  PubMed  Google Scholar 

  16. Miao Y, Dong LD, Chen J, Hu XC, Yang XL, Wang Z (2012) Involvement of calpain/p35-p25/Cdk5/NMDAR signaling pathway in glutamate-induced neurotoxicity in cultured rat retinal neurons. PLoS One 7(8):e42318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Miao Y, Wang XH, Wang Z (2011) Elevation of p-NR2A(S1232) by Cdk5/p35 contributes to retinal ganglion cell apoptosis in a rat experimental glaucoma model. Neurobiol Dis 43(2):455–464

    Article  CAS  PubMed  Google Scholar 

  18. Chen M, Wang Y, Liu Y, Hou XY, Zhang QG, Meng FJ, Zhang GY (2003) Possible mechanisms underlying the protective effects of SY-21, an extract of a traditional Chinese herb, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampus. Brain Res 989(2):180–186

    Article  CAS  PubMed  Google Scholar 

  19. Ma J, Zhang GY (2003) Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci Lett 348(3):185–189

    Article  CAS  PubMed  Google Scholar 

  20. Hou XY, Zhang GY, Zong YY (2003) Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus. Neurosci Lett 343(2):125–128

    Article  CAS  PubMed  Google Scholar 

  21. Zhang F, Li C, Wang R, Han D, Zhang QG, Zhou C, Yu HM, Zhang GY (2007) Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 150(4):938–949

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Chan SL, Lu C, Lane MA, Mattson MP (2002) Phenformin suppresses calcium responses to glutamate and protects hippocampal neurons against excitotoxicity. Exp Neurol 175(1):161–167

    Article  CAS  PubMed  Google Scholar 

  23. Zhang LH, Wei EQ (2003) Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats. Acta Pharmacol Sin 24(12):1241–1247

    CAS  PubMed  Google Scholar 

  24. Murotomi K, Takagi N, Takayanagi G, Ono M, Takeo S, Tanonaka K (2008) mGluR1 antagonist decreases tyrosine phosphorylation of NMDA receptor and attenuates infarct size after transient focal cerebral ischemia. J Neurochem 105(5):1625–1634

    Article  CAS  PubMed  Google Scholar 

  25. Choi SY, Hwang JJ, Koh JY (2004) NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cell culture. J Neurochem 88(3):708–716

    Article  CAS  PubMed  Google Scholar 

  26. Texido L, Martin-Satue M, Alberdi E, Solsona C, Matute C (2011) Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium 49(3):184–190

    Article  CAS  PubMed  Google Scholar 

  27. Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26(11):2956–2963

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857

    Article  CAS  PubMed  Google Scholar 

  29. Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH et al (2008) Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 39(11):3042–3048

    Article  CAS  PubMed  Google Scholar 

  30. Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, Patel TP, Meaney DF (2012) NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int 60(5):506–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng M, Liao M, Cui T, Tian H, Fan DS, Wan Q (2012) Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN. J Cell Sci 125(Pt 6):1556–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Korde AS, Maragos WF (2012) Identification of an N-methyl-D-aspartate receptor in isolated nervous system mitochondria. J Biol Chem 287(42):35192–35200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matteucci A, Cammarota R, Paradisi S, Varano M, Balduzzi M, Leo L, Bellenchi GC, De Nuccio C et al (2011) Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest Ophthalmol Vis Sci 52(2):1070–1077

    Article  CAS  PubMed  Google Scholar 

  34. Xu Q, Ji XF, Chi TY, Liu P, Jin G, Gu SL, Zou LB (2015) Sigma 1 receptor activation regulates brain-derived neurotrophic factor through NR2A-CaMKIV-TORC1 pathway to rescue the impairment of learning and memory induced by brain ischaemia/reperfusion. Psychopharmacology 232(10):1779–1791

    Article  CAS  PubMed  Google Scholar 

  35. Xiao L, Feng C, Chen Y (2010) Glucocorticoid rapidly enhances NMDA-evoked neurotoxicity by attenuating the NR2A-containing NMDA receptor-mediated ERK1/2 activation. Mol Endocrinol 24(3):497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, Brann D, Wang R (2015) Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus 25(3):286–296

    Article  CAS  PubMed  Google Scholar 

  37. Terasaki Y, Sasaki T, Yagita Y, Okazaki S, Sugiyama Y, Oyama N, Omura-Matsuoka E, Sakoda S et al (2010) Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab 30(8):1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Z, Hu B, Wang F, Du L, Huang B, Li L, Qi J, Wang X (2015) Glycine bidirectionally regulates ischemic tolerance via different mechanisms including NR2A-dependent CREB phosphorylation. J Neurochem 133(3):397–408

    Article  CAS  PubMed  Google Scholar 

  39. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl) 78(1):3–13

    Article  CAS  Google Scholar 

  40. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    Article  CAS  PubMed  Google Scholar 

  41. Anegawa NJ, Lynch DR, Verdoorn TA, Pritchett DB (1995) Transfection of N-methyl-D-aspartate receptors in a nonneuronal cell line leads to cell death. J Neurochem 64(5):2004–2012

    Article  CAS  PubMed  Google Scholar 

  42. Boeckman FA, Aizenman E (1996) Pharmacological properties of acquired excitotoxicity in Chinese hamster ovary cells transfected with N-methyl-D-aspartate receptor subunits. J Pharmacol Exp Ther 279(2):515–523

    CAS  PubMed  Google Scholar 

  43. Anegawa NJ, Guttmann RP, Grant ER, Anand R, Lindstrom J, Lynch DR (2000) N-Methyl-D-aspartate receptor mediated toxicity in nonneuronal cell lines: characterization using fluorescent measures of cell viability and reactive oxygen species production. Brain Res Mol Brain Res 77(2):163–175

    Article  CAS  PubMed  Google Scholar 

  44. Rajdev S, Reynolds IJ (1994) Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neurons in vitro: effect of chemical ischemia. Neuroscience 62(3):667–679

    Article  CAS  PubMed  Google Scholar 

  45. Thayer SA, Wang GJ (1995) Glutamate-induced calcium loads: effects on energy metabolism and neuronal viability. Clin Exp Pharmacol Physiol 22(4):303–304

    Article  CAS  PubMed  Google Scholar 

  46. Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW (1993) Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 13(5):1993–2000

    CAS  PubMed  Google Scholar 

  47. Eimerl S, Schramm M (1994) The quantity of calcium that appears to induce neuronal death. J Neurochem 62(3):1223–1226

    Article  CAS  PubMed  Google Scholar 

  48. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    Article  CAS  PubMed  Google Scholar 

  49. Peng TI, Greenamyre JT (1998) Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol 53(6):974–980

    CAS  PubMed  Google Scholar 

  50. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1(5):366–373

    Article  CAS  PubMed  Google Scholar 

  51. Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4(2):149–177

    Article  CAS  PubMed  Google Scholar 

  52. Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38(1):78–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16(8):2479–2487

    CAS  PubMed  Google Scholar 

  54. Wang X, Pei L, Yan H, Wang Z, Wei N, Wang S, Yang X, Tian Q et al (2014) Intervention of death-associated protein kinase 1-p53 interaction exerts the therapeutic effects against stroke. Stroke 45(10):3089–3091

    Article  CAS  PubMed  Google Scholar 

  55. Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU (2011) CaMKII in cerebral ischemia. Acta Pharmacol Sin 32(7):861–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW (2009) Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem 108(5):1237–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, Lu W, Ji X et al (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16(12):1439–1443

    Article  CAS  PubMed  Google Scholar 

  58. Lai TW, Wang YT (2010) Fashioning drugs for stroke. Nat Med 16(12):1376–1378

    Article  CAS  PubMed  Google Scholar 

  59. Jones N (2011) Stroke: disruption of the nNOS-PSD-95 complex is neuroprotective in models of cerebral ischemia. Nat Rev Neurol 7(2):61

    Article  PubMed  Google Scholar 

  60. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vest RS, O’Leary H, Coultrap SJ, Kindy MS, Bayer KU (2010) Effective post-insult neuroprotection by a novel Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor. J Biol Chem 285(27):20675–20682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17(7):2469–2476

    CAS  PubMed  Google Scholar 

  63. Chen N, Luo T, Raymond LA (1999) Subtype-dependence of NMDA receptor channel open probability. J Neurosci 19(16):6844–6854

    CAS  PubMed  Google Scholar 

  64. Dong YN, Wu HY, Hsu FC, Coulter DA, Lynch DR (2006) Developmental and cell-selective variations in N-methyl-D-aspartate receptor degradation by calpain. J Neurochem 99(1):206–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    Article  CAS  PubMed  Google Scholar 

  66. Kim MJ, Dunah AW, Wang YT, Sheng M (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46(5):745–760

    Article  CAS  PubMed  Google Scholar 

  67. Li S, Tian X, Hartley DM, Feig LA (2006) Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J Neurosci 26(6):1721–1729

    Article  CAS  PubMed  Google Scholar 

  68. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB et al (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  69. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE et al (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40(4):775–784

    Article  CAS  PubMed  Google Scholar 

  70. Asati V, Mahapatra DK, Bharti SK (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem 109:314–341

    Article  CAS  PubMed  Google Scholar 

  71. Tian X, Gotoh T, Tsuji K, Lo EH, Huang S, Feig LA (2004) Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J 23(7):1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun WL, Quizon PM, Zhu J (2016) Molecular mechanism: ERK signaling, drug addiction, and behavioral effects. Prog Mol Biol Transl Sci 137:1–40

    Article  PubMed  Google Scholar 

  73. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11

    Article  CAS  PubMed  Google Scholar 

  74. Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G (2011) Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience 189:32–42

    Article  CAS  PubMed  Google Scholar 

  75. Cepeda C, Levine MS (2012) 2B or not 2B: a tail of two NMDA receptor subunits. Neuron 74(3):426–428

    Article  CAS  PubMed  Google Scholar 

  76. Sun Y, Zhang L, Chen Y, Zhan L, Gao Z (2015) Therapeutic targets for cerebral ischemia based on the signaling pathways of the GluN2B C terminus. Stroke 46(8):2347–2353

    Article  PubMed  Google Scholar 

  77. Volgraf M, Sellers BD, Jiang Y, Wu G, Ly CQ, Villemure E, Pastor RM, Yuen PW, Lu A, Luo X, Liu M, Zhang S, Sun L, Fu Y, Lupardus PJ, Wallweber HJ, Liederer BM, Deshmukh G, Plise E, Tay S, Reynen P, Herrington J, Gustafson A, Liu Y, Dirksen A, Dietz MG, Liu Y, Wang TM, Hanson JE, Hackos D, Scearce-Levie K, Schwarz JB (2016) Discovery of GluN2A-selective NMDA receptor positive allosteric modulators (PAMs): tuning deactivation kinetics via structure-based design. J Med Chem.

  78. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang TM, Reynen P, Gustafson A, Wallweber HJ et al (2016) Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89(5):983–999

    Article  CAS  PubMed  Google Scholar 

  79. Xiang Z, Conn PJ (2016) Novel PAMs targeting NMDAR GluN2A subunit. Neuron 89(5):884–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang F, Guo A, Liu C, Comb M, Hu B (2013) Phosphorylation and assembly of glutamate receptors after brain ischemia. Stroke 44(1):170–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zibin Gao.

Ethics declarations

Funding

This work was supported by the Natural Science Foundation of China (NSFC 81200886, NSFC 81402886), the Natural Science Foundation of Hebei Province (H2014208004), the Science and Technology Project of Hebei Province (13397703D), the Key Basic Research Program of the Application Foundation Research Project of Hebei Province (14967719D, 15962704D). The authors acknowledge support from the State Key Laboratory Breeding Base—Hebei Key Laboratory of Molecular Chemistry for Drug and Hebei Research Center of Pharmaceutical and Chemical Engineering.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cheng, X., Hu, J. et al. The Role of GluN2A in Cerebral Ischemia: Promoting Neuron Death and Survival in the Early Stage and Thereafter. Mol Neurobiol 55, 1208–1216 (2018). https://doi.org/10.1007/s12035-017-0395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0395-8

Keywords

Navigation