Skip to main content

Advertisement

Log in

Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Rnf112 is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is regulated during brain development. Our previous study has revealed that Rnf112 can promote neuronal differentiation by inhibiting the progression of the cell cycle in cell models. In this study, we further revealed the important functions of Rnf112 in embryo development and in adult brain. Our data showed that most of the Rnf112 −/− embryos exhibited blood vascular defects and died in utero. Upon further investigation, we found that the survival rate of homozygous Rnf112 knockout mice in 129/sv and C57BL/6 mixed genetic background was increased. The survived newborns of Rnf112 −/− mice manifested growth retardation as indicated by smaller size and a reduced weight. Although the overall organization of the brain did not appear to be severely affected in Rnf112 −/− mice, using in vivo 3D MRI imaging, we found that when compared to wild-type littermates, brains of Rnf112 −/− mice were smaller. In addition, Rnf112 −/− mice displayed impairment of brain functions including motor balance, and spatial learning and memory. Our results provide important aspects for the study of Rnf112 gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Matsuda Y, Inoue S, Seki N, Hosoi T, Orimo A et al (1996) Chromosome mapping of human (ZNF179), mouse, and rat genes for brain finger protein (bfp), a member of the RING finger family. Genomics 33:325–327

    Article  CAS  PubMed  Google Scholar 

  2. Kimura T, Arakawa Y, Inoue S, Fukushima Y, Kondo I et al (1997) The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2. Am J Med Genet 69:320–324

    Article  CAS  PubMed  Google Scholar 

  3. Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q et al (1997) Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet 17:154–163

    Article  CAS  PubMed  Google Scholar 

  4. Elsea SH, Girirajan S (2008) Smith-Magenis syndrome. Eur J Hum Genet 16:412–421

    Article  CAS  PubMed  Google Scholar 

  5. Bi W, Saifi GM, Girirajan S, Shi X, Szomju B et al (2006) RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith-Magenis syndrome. Am J Med Genet A 140:2454–2463

    Article  PubMed  Google Scholar 

  6. Zhao Q, Chen KS, Bejjani BA, Lupski JR (1998) Cloning, genomic structure, and expression of mouse ring finger protein gene Znf179. Genomics 49:394–400

    Article  CAS  PubMed  Google Scholar 

  7. Seki N, Hattori A, Muramatsu M, Saito T (1999) cDNA cloning of a human brain finger protein, BFP/ZNF179, a member of the RING finger protein family. DNA Res 6:353–356

    Article  CAS  PubMed  Google Scholar 

  8. Pao PC, Huang NK, Liu YW, Yeh SH, Lin ST et al (2011) A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonic stem cells. Cell Death Differ 18:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orimo A, Inoue S, Ikeda K, Sato M, Kato A et al (1998) Molecular cloning, localization, and developmental expression of mouse brain finger protein (Bfp)/ZNF179: distribution of bfp mRNA partially coincides with the affected areas of Smith-Magenis syndrome. Genomics 54:59–69

    Article  CAS  PubMed  Google Scholar 

  10. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  11. Lomash RM, Gu X, Youle RJ, Lu W, Roche KW (2015) Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density. Cell Rep 12:1–9

    Article  Google Scholar 

  12. Wang SM, Lee YC, Ko CY, Lai MD, Lin DY et al (2015) Increase of zinc finger protein 179 in response to CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in astrocytes of Alzheimer’s disease. Mol Neurobiol 51:370–382

    Article  CAS  PubMed  Google Scholar 

  13. Morton AJ, Hunt MJ, Hodges AK, Lewis PD, Redfern AJ et al (2005) A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington’s disease. Eur J Neurosci 21:855–870

    Article  PubMed  Google Scholar 

  14. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J et al (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–9219

    Article  CAS  PubMed  Google Scholar 

  15. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S et al (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Kessler J, Shen J (2000) Heterogeneous populations of ES cells in the generation of a floxed Presenilin-1 allele. Genesis 26:5–8

    Article  PubMed  Google Scholar 

  17. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ et al (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    Article  CAS  PubMed  Google Scholar 

  18. Masuya H, Inoue M, Wada Y, Shimizu A, Nagano J et al (2005) Implementation of the modified-SHIRPA protocol for screening of dominant phenotypes in a large-scale ENU mutagenesis program. Mamm Genome 16:829–837

    Article  PubMed  Google Scholar 

  19. Flaherty L (1981) Congenic strains. In: Foster HL, Small JD, Fox JG (eds) The mouse in biomedical research. Academic Press, New York, pp 215–222

    Google Scholar 

  20. Lin DY, Huang CC, Hsieh YT, Lin HC, Pao PC et al (2013) Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf). J Biomed Sci 20:98–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jopling HM, Odell AF, Pellet-Many C, Latham AM, Frankel P et al (2014) Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cell 29:363–385

    Article  Google Scholar 

  23. Lee MY, Skoura A, Park EJ, Landskroner-Eiger S, Jozsef L et al (2014) Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 141:1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65:1873–1887

    Article  CAS  PubMed  Google Scholar 

  25. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiang C, Baubet V, Pal S, Holderbaum L, Tatard V et al (2012) RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ 19:692–702

    Article  CAS  PubMed  Google Scholar 

  27. Boehm SL II, Schafer GL, Phillips TJ, Browman KE, Crabbe JC (2000) ntra-nucleus accumbens shell injections of R(+)- and S(−)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice. Behav Brain Res 272:238–47

    Google Scholar 

  28. Piot-Grosjean O, Wahl F, Gobbo O, Stutzmann JM (2001) Assessment of sensorimotor and cognitive deficits induced by a moderate traumatic injury in the right parietal cortex of the rat. Neurobiol Dis 8:1082–1093

    Article  CAS  PubMed  Google Scholar 

  29. Stanley JL, Lincoln RJ, Brown TA, McDonald LM, Dawson GR, Reynolds DS (2005) The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J Psychopharmacol 19:221–227

    Article  CAS  PubMed  Google Scholar 

  30. Lømo T (1966) Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand 68:128

    Google Scholar 

  31. Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538

    Article  CAS  PubMed  Google Scholar 

  32. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ et al (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816

    Article  CAS  PubMed  Google Scholar 

  33. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    Article  CAS  PubMed  Google Scholar 

  34. Park M, Penick EC, Edwards JG, Kauer JA, Ehlers MD (2004) Recycling endosomes supply AMPA receptors for LTP. Science 305:1972–1975

    Article  CAS  PubMed  Google Scholar 

  35. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Republic of China (NSC 102-2320-B-038-024), Ministry of Science and Technology, Republic of China (MOST 103-2320-B-038-034, MOST 103-2320-B-197-002), and Taipei Medical University (TMU101-AE3-Y24). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the technical services provided by the “Transgenic Mouse Model Core Facility of the National Core Facility Program for Biotechnology, National Science Council” and the “Gene Knockout Mouse Core Laboratory of National Taiwan University Center of Genomic Medicine.” We also thank the technical supports from the Taiwan Mouse Clinic (MOST 104-2325-B-001-011) which is funded by the National Research Program for Biopharmaceuticals (NRPB) at the Ministry of Science and Technology (MOST) of Taiwan. We thank Ms. Christine Chin-jung Hsieh for the English language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chao Lee.

Additional information

Jen-Hui Tsou and Ying-Chen Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

MRI images of mouse brain. Axial (a) and coronal (bd) views of MRI. Data was obtained from the 5 wild type (Rnf112 +/+) and 4 homozygous Rnf112-knockout (Rnf112 −/−) mice (PDF 16652 kb)

Supplemental Fig. 2

Expression of Rnf112 in umbilical cord. Western blot analysis of Rnf112 and β-actin expressions in the indicated tissues (PDF 838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsou, JH., Yang, YC., Pao, PC. et al. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions. Mol Neurobiol 54, 2286–2300 (2017). https://doi.org/10.1007/s12035-016-9812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9812-7

Keywords

Navigation