Skip to main content
Log in

RAS Promotes Proliferation and Resistances to Apoptosis in Meningioma

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we investigated the influence of elevated RAS expression on the growth of meningioma in vivo and in vitro. The IOMM-LEE cells, representing a cell line derived from malignant meningioma, were divided into blank control group (cells without any drug treatment), negative control group (cells treated with an equal volume of normal saline to replace drug), and farnesyl thiosalicylic acid (FTS)-treated group (cells treated with FTS). Methyl-thiazole-tetrazolium bromide (MTT) assay and flow cytometer (with cells after FTS (75 μmol/L) treatment for 48 h) were utilized to determine the proliferation and apoptosis, respectively, of IOMM-LEE cells after RAS inhibition. Western blot analysis was used for semi-quantitative analysis of p-ERK and p-AKT levels. Animal model of human meningioma was established with sub-renal capsule transplantation, and mice were divided into two groups: experimental group (50 mg/kg group, 75 mg/kg group, and 100 mg/kg, hypodermic injection with FTS) and control group. Proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry (IHC). Western blot analysis was used for detecting ERK and AKT signal pathway. The proliferation of IOMM-LEE cells decreased dramatically and apoptosis rate increased significantly in FTS-treated group compared to blank control group and negative control group (all P < 0.05). At FTS concentration of 75 μmol/L, the apoptosis rate of IOMM-LEE cells reduced significantly over time (P < 0.05). Cell cycle analysis showed that IOMM-LEE cells exhibited G1-arrest in the FTS-treated group, compared to no cell-cycle arrest in blank control group and the negative control group (P < 0.05). Further, significantly decreased ERK and AKT phosphorylation levels were detected in IOMM-Lee cells after FTS (75 μmol/L) treatment for 48 h, compared to blank control group and negative control group (P < 0.05). The results in vivo experiments showed that after FTS treatment, tumor volume, PCNA LI, and the levels of p-ERK and p-Akt decreased significantly in 75 mg/kg group and 100 mg/kg group when compared with the control group and 50 mg/kg group (all P < 0.05). Our findings provide strong evidence that RAS protein is highly expressed in meningioma cells, and the RAS activity is inhibited by downregulating ERK and AKT signal pathway, which may further inhibit the growth of meningioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith MJ, O’Sullivan J, Bhaskar SS et al (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298

    Article  CAS  PubMed  Google Scholar 

  2. Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391

    Article  CAS  PubMed  Google Scholar 

  3. Bumrungrachpukdee P, Pruphetkaew N, Phukaoloun M et al (2014) Recurrence of intracranial meningioma after surgery: analysis of influencing factors and outcome. J Med Assoc Thai 97:399–406

    PubMed  Google Scholar 

  4. Pollock BE, Stafford SL, Link MJ et al (2012) Stereotactic radiosurgery of World Health Organization grade II and III intracranial meningiomas: treatment results on the basis of a 22-year experience. Cancer 118:1048–1054

    Article  PubMed  Google Scholar 

  5. Claus EB, Calvocoressi L, Bondy ML et al (2013) Exogenous hormone use, reproductive factors, and risk of intracranial meningioma in females. J Neurosurg 118:649–656

    Article  CAS  PubMed  Google Scholar 

  6. Walcott BP, Nahed BV, Brastianos PK et al (2013) Radiation treatment for WHO Grade II and III meningiomas. Front Oncol 3:227

    Article  PubMed  PubMed Central  Google Scholar 

  7. Halasz LM, Bussiere MR, Dennis ER et al (2011) Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys 81:1428–1435

    Article  PubMed  Google Scholar 

  8. Nayak L, Iwamoto FM, Rudnick JD et al (2012) Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol 109:187–193

    Article  CAS  PubMed  Google Scholar 

  9. Marchand AA, O’Shaughnessy J (2014) Subtle clinical signs of a meningioma in an adult: a case report. Chiropr Man Ther 22:8

    Article  Google Scholar 

  10. Brastianos PK, Horowitz PM, Santagata S et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bentley C, Jurinka SS, Kljavin NM et al (2013) A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J 452:313–320

    Article  CAS  PubMed  Google Scholar 

  13. Ye X, Carew TJ (2010) Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 68:340–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vigil D, Cherfils J, Rossman KL et al (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takashima A, Faller DV (2013) Targeting the RAS oncogene. Expert Opin Ther Targets 17:507–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall C (2012) Pathway discovery: the road to Ras and MAP kinase. Nat Cell Biol 14:978

    Article  CAS  PubMed  Google Scholar 

  17. Kadia TM, Kantarjian H, Kornblau S et al (2012) Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS. Cancer 118:5550–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al-Kali A, Quintas-Cardama A, Luthra R et al (2013) Prognostic impact of RAS mutations in patients with myelodysplastic syndrome. Am J Hematol 88:365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia XM, Jin WY, Shi RZ et al (2010) Clinical significance and the correlation of expression between Let-7 and K-ras in non-small cell lung cancer. Oncol Lett 1:1045–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stornetta RL, Zhu JJ (2011) Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist 17:54–78

    Article  CAS  PubMed  Google Scholar 

  21. Weisberg E, Nonami A, Chen Z et al (2015) Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies. Leukemia 29:27–37

    Article  CAS  PubMed  Google Scholar 

  22. Vanbrocklin MW, Robinson JP, Lastwika KJ et al (2012) Ink4a/Arf loss promotes tumor recurrence following Ras inhibition. Neuro Oncol 14:34–42

    Article  CAS  PubMed  Google Scholar 

  23. Sot B, Behrrmann E, Raunser S et al (2013) Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes. Proc Natl Acad Sci U S A 110:111–116

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki AT, Carracedo A, Locasale JW et al (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4:667–672

    Article  Google Scholar 

  25. Liu XV, Ho SS, Tan JJ et al (2012) Ras activation induces expression of Raet1 family NK receptor ligands. J Immunol 189:1826–1834

    Article  CAS  PubMed  Google Scholar 

  26. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  CAS  PubMed  Google Scholar 

  27. Buday L, Downward J (2008) Many faces of Ras activation. Biochim Biophys Acta 1786:178–187

    CAS  PubMed  Google Scholar 

  28. Oliveira AF, Yasuda R (2013) An improved Ras sensor for highly sensitive and quantitative FRET-FLIM imaging. PLoS One 8, e52874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283:125–134

    Article  CAS  PubMed  Google Scholar 

  30. Wong KK (2009) Recent developments in anti-cancer agents targeting the Ras/Raf/ MEK/ERK pathway. Recent Pat Anticancer Drug Discov 4:28–35

    Article  CAS  PubMed  Google Scholar 

  31. Rajalingam K, Wunder C, Brinkmann V et al (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837–843

    Article  CAS  PubMed  Google Scholar 

  32. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Science and Technology Project of Jiangxi (number 20141BBG70050), National Natural Science Foundation of People’s Republic of China (Nos. 81302187, 81200644), cws14c063. We would like to acknowledge the reviewers for their helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua He or Ouping Huang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Dr. Ouping Huang [ouping_huang@126.com] is the first corresponding author.

Chunling Jiang and Tao Song contributed equally as co-first author to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Song, T., Li, J. et al. RAS Promotes Proliferation and Resistances to Apoptosis in Meningioma. Mol Neurobiol 54, 779–787 (2017). https://doi.org/10.1007/s12035-016-9763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9763-z

Keywords

Navigation