Skip to main content

Advertisement

Log in

RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Borgens RB, Liu-Snyder P (2012) Understanding secondary injury. Q Rev Biol 87(2):89–127

    Article  PubMed  Google Scholar 

  2. Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48(4):301–316. doi:10.3109/10409238.2013.786671

    Article  CAS  PubMed  Google Scholar 

  3. Schmandke A, Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 13(5):454–469. doi:10.1177/1073858407303611

    Article  CAS  Google Scholar 

  4. Wu X, Xu XM (2016) RhoA/Rho kinase in spinal cord injury. Neural Regen Res 11(1):23–27. doi:10.4103/1673-5374.169601

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jing Liu H-yG, Wang X-f (2015) The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res 10(11):1892–1896

    Article  PubMed  PubMed Central  Google Scholar 

  6. Forgione N, Fehlings MG (2014) Rho-ROCK inhibition in the treatment of spinal cord injury. World Neurosurg 82(3–4):E535–E539. doi:10.1016/j.wneu.2013.01.009

    Article  PubMed  Google Scholar 

  7. Cao XJ, Feng SQ, Fu CF, Gao K, Guo JS, Guo XD, He XJ, Huang ZW et al (2015) Repair, protection and regeneration of spinal cord injury. Neural Regen Res 10(12):1953–1975. doi:10.4103/1673-5374.172314

    Article  Google Scholar 

  8. Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162(2):233–243. doi:10.1083/jcb.200301080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp 55(2):61–75. doi:10.1007/s00005-007-0009-7

    Article  Google Scholar 

  10. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636. doi:10.1083/jcb.140.3.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345. doi:10.1038/35070009

    Article  CAS  PubMed  Google Scholar 

  12. Croft DR, Coleman ML, Li SX, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168(2):245–255. doi:10.1083/jcb.200409049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci U S A 103(34):12825–12830. doi:10.1073/pnas.0605331103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiotani S, Shimada M, Suehiro T, Soejima Y, Yosizumi T, Shimokawa H, Maehara Y (2004) Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats. Transplantation 78(3):375–382

    Article  CAS  PubMed  Google Scholar 

  15. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45(2):205–213. doi:10.1194/jlr.R300016-JLR200

    Article  CAS  PubMed  Google Scholar 

  16. Liu NK, Xu XM (2010) Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol 41(2–3):197–205. doi:10.1007/s12035-010-8101-0

    Article  CAS  PubMed  Google Scholar 

  17. Liu NK, Xu XM (2012) Neuroprotection and its molecular mechanism following spinal cord injury. Neural Regen Res 7(26):2051–2062. doi:10.3969/j.issn.1673-5374.2012.26.007

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cummings BS, Mchowat J, Schnellmann RG (2000) Phospholipase A(2)s in cell injury and death. J Pharmacol Exp Ther 294(3):793–799

    CAS  PubMed  Google Scholar 

  19. Gijon MA, Leslie CC (1999) Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol 65(3):330–336

    CAS  PubMed  Google Scholar 

  20. Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac'h-Pillot K, Koziel V, Yen-Potin FT, Bihain B et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 19(1):85–87. doi:10.1096/fj.04-1807fje

    CAS  Google Scholar 

  21. Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, Shields CB, Xu XM (2006) A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol 59(4):606–619. doi:10.1002/ana.20798

    Article  CAS  PubMed  Google Scholar 

  22. Liu NK, Deng LX, Zhang YP, Lu QB, Wang XF, Hu JG, Oakes E, Bonventre JV et al (2014) Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann Neurol 75(5):644–658. doi:10.1002/ana.24134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS (2012) Inflammation & apoptosis in spinal cord injury. Indian J Med Res 135(3):287–296

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC (2002) Cell death in models of spinal cord injury. Prog Brain Res 137:37–47

    Article  PubMed  Google Scholar 

  25. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ et al (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17(14):5395–5406

    CAS  PubMed  Google Scholar 

  26. Jiang XY, Fu SL, Nie BM, Li Y, Lin L, Yin L, Wang YX, Lu PH et al (2006) Methods for isolating highly-enriched embryonic spinal cord neurons: a comparison between enzymatic and mechanical dissociations. J Neurosci Meth 158(1):13–18. doi:10.1016/j.jneumeth.2006.05.014

    Article  CAS  Google Scholar 

  27. Liu NK, Xu XM (2006) Beta-tubulin is a more suitable internal control than beta-actin in western blot analysis of spinal cord tissues after traumatic injury. J Neurotraum 23(12):1794–1801. doi:10.1089/neu.2006.23.1794

    Article  Google Scholar 

  28. Zhang YP, Burke DA, Shields LBE, Chekmenev SY, Dincman T, Zhang YJ, Zheng YY, Smith RR et al (2008) Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J Neurotraum 25(10):1227–1240. doi:10.1089/neu.2007.0388

    Article  CAS  Google Scholar 

  29. Chao CC, Hu SX (1994) Tumor-necrosis-factor-alpha potentiates glutamate neurotoxicity in human fetal brain-cell cultures. Dev Neurosci-Basel 16(3–4):172–179. doi:10.1159/000112104

    Article  CAS  Google Scholar 

  30. Miller BA, Sun F, Christensen RN, Ferguson AR, Bresnahan JC, Beattie MS (2005) A sublethal dose of TNF alpha potentiates kainate-induced excitotoxicity in optic nerve oligodendrocytes. Neurochem Res 30(6–7):867–875

    Article  CAS  PubMed  Google Scholar 

  31. Coughlan AR (1993) Secondary injury mechanisms in acute spinal-cord trauma. J Small Anim Pract 34(3):117–122. doi:10.1111/j.1748-5827.1993.tb02628.x

    Article  Google Scholar 

  32. Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21(6):754–774. doi:10.1089/0897715041269641

    Article  PubMed  Google Scholar 

  33. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129. doi:10.1385/MN:24:1-3:107

    Article  CAS  PubMed  Google Scholar 

  34. Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500(2):267–285. doi:10.1002/cne.21149

    Article  CAS  PubMed  Google Scholar 

  35. Ferguson AR, Christensen RN, Gensel JC, Miller BA, Sun F, Beattie EC, Bresnahan JC, Beattie MS (2008) Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J Neurosci 28(44):11391–11400. doi:10.1523/Jneurosci.3708-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hermann GE, Rogers RC, Bresnahan JC, Beattie MS (2001) Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis 8(4):590–599. doi:10.1006/nbdi.2001.0414

    Article  CAS  PubMed  Google Scholar 

  37. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034(1–2):11–24. doi:10.1016/j.brainres.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  38. Tolosa L, Caraballo-Miralles V, Olmos G, Llado J (2011) TNF-alpha potentiates glutamate-induced spinal cord motoneuron death via NF-kappaB. Mol Cell Neurosci 46(1):176–186. doi:10.1016/j.mcn.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA (2002) Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 22(3):854–862

    CAS  PubMed  Google Scholar 

  40. Hunter I, Cobban HJ, Vandenabeele P, MacEwan DJ, Nixon GF (2003) Tumor necrosis factor-alpha-induced activation of RhoA in airway smooth muscle cells: role in the Ca2+ sensitization of myosin light chain(20) phosphorylation. Mol Pharmacol 63(3):714–721. doi:10.1124/Mol.63.3.714

    Article  CAS  PubMed  Google Scholar 

  41. Mong PY, Petrulio C, Kaufman HL, Wang Q (2008) Activation of rho kinase by TNF-alpha is required for JNK activation in human pulmonary microvascular endothelial cells. J Immunol 180(1):550–558

    Article  CAS  PubMed  Google Scholar 

  42. Semenova MM, Maki-Hokkonen AM, Cao J, Komarovski V, Forsberg KM, Koistinaho M, Coffey ET, Courtney MJ (2007) Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat Neurosci 10(4):436–443. doi:10.1038/nn1869

    CAS  PubMed  Google Scholar 

  43. Li Z, Dong XM, Wang ZL, Liu WZ, Deng N, Ding Y, Tang LY, Hla T et al (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7(4):399–U342. doi:10.1038/Ncb1236

    Article  CAS  PubMed  Google Scholar 

  44. Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277(8):6214–6222. doi:10.1074/jbc.M110508200

    Article  CAS  PubMed  Google Scholar 

  45. Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M (2005) Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 171(6):1013–1022. doi:10.1083/jcb.200504137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang YX, Martin-McNulty B, da Cunha V, Vincelette J, Lu XG, Feng QP, Halks-Miller M, Mahmoudi M et al (2005) Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 111(17):2219–2226. doi:10.1161/01.Cir.0000163544.17221.Be

    Article  CAS  PubMed  Google Scholar 

  47. Horton JW, Maass DL, Ballard-Croft C (2005) Rho-associated kinase modulates myocardial inflammatory cytokine responses. Shock 24(1):53–58. doi:10.1097/01.shk.0000167109.96000.7f

    Article  CAS  PubMed  Google Scholar 

  48. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S et al (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo—effect on endothelial NAD (P) H oxidase system. Circ Res 93(8):767–775. doi:10.1161/01.Res.0000096650.91688.28

    Article  CAS  PubMed  Google Scholar 

  49. Clark JD, Schievella AR, Nalefski EA, Lin LL (1995) Cytosolic phospholipase A2. J Lipid Mediat Cell Signal 12(2–3):83–117

    Article  CAS  PubMed  Google Scholar 

  50. Wissing D, Mouritzen H, Egeblad M, Poirier GG, Jaattela M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci U S A 94(10):5073–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA (1993) Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the induced synthesis. Proc Natl Acad Sci U S A 90(10):4475–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nalefski EA, Sultzman LA, Martin DM, Kriz RW, Towler PS, Knopf JL, Clark JD (1994) Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca(2+)-dependent lipid-binding domain and a Ca(2+)-independent catalytic domain. J Biol Chem 269(27):18239–18249

    CAS  PubMed  Google Scholar 

  53. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) Cpla2 is phosphorylated and activated by map kinase. Cell 72(2):269–278. doi:10.1016/0092-8674(93)90666-E

    Article  CAS  PubMed  Google Scholar 

  54. Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D, Ghomashchi F, Yates JR 3rd et al (2000) Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 275(48):37542–37551. doi:10.1074/jbc.M003395200

    Article  CAS  PubMed  Google Scholar 

  55. Waterman WH, Molski TF, Huang CK, Adams JL, Sha'afi RI (1996) Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. The Biochemical journal 319(Pt 1):17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hernandez M, Bayon Y, Sanchez Crespo M, Nieto ML (1999) Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-alpha: phosphorylation of cytosolic phospholipase A2 and transactivation of cyclooxygenase-2. J Neurochem 73(4):1641–1649

    Article  CAS  PubMed  Google Scholar 

  57. Hirabayashi T, Kume K, Hirose K, Yokomizo T, Iino M, Itoh H, Shimizu T (1999) Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A(2). J Biol Chem 274(8):5163–5169. doi:10.1074/jbc.274.8.5163

    Article  CAS  PubMed  Google Scholar 

  58. Evans JH, Gerber SH, Murray D, Leslie CC (2004) The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol Biol Cell 15(1):371–383. doi:10.1091/mbc.E03-05-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mariggio S, Bavec A, Natale E, Zizza P, Salmona M, Corda D, Di Girolamo M (2006) G alpha(13) mediates activation of the cytosolic phospholipase A(2)alpha through fine regulation of ERK phosphorylation. Cell Signal 18(12):2200–2208. doi:10.1016/j.cellsig.2006.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH NS059622, NS073636, DOD CDMRP W81XWH-12-1-0562, Merit Review Award I01 BX002356 from the US Department of Veterans Affairs, Craig H Neilsen Foundation 296749, Indiana Spinal Cord and Brain Injury Research Foundation and Mari Hulman George Endowment Funds (XMX), and by the State of Indiana ISDH, Grant # 13679 (XW).

Author Contributions

XW designed, performed experiments, analyzed data and wrote manuscript; CW designed and wrote manuscript; QL, WW, DE, JP performed experiments; XMX designed experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Walker, C.L., Lu, Q. et al. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation. Mol Neurobiol 54, 6885–6895 (2017). https://doi.org/10.1007/s12035-016-0187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0187-6

Keywords

Navigation