Skip to main content
Log in

Demyelination-Induced Inflammation Attracts Newly Born Neurons to the White Matter

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is compelling evidence that microglial activation negatively impacts neurogenesis. However, microglia have also been shown to promote recruitment of newly born neurons to injured areas of the gray matter. In the present study, we explored whether demyelination-triggered inflammation alters the process of neurogenesis in the white matter. A 2-μl solution of 0.04 % ethidium bromide was stereotaxically injected into the corpus callosum of adult male rats. Brain inflammation was dampened by daily injections of progesterone (5 mg/kg, s.c.) for 14 days. Control rats received oil (s.c.). Newly born neurons (DCX and Tbr2), microglia (Iba-1), astrocytes (vimentin or GFAP), oligodendrocyte progenitor cells (OPCs; NG2), and mature oligodendrocytes (CC-1) were monitored in the vicinity of demyelination site using immunofluorescent staining. Western blot was used to explore microglial polarization using M1 (iNOS) and M2 (arginase-1) markers. Focal demyelination elicited strong microglial and astroglial activation and reduced the number of OPCs at the site of demyelination. This inflammatory response was associated with enhanced number of newly born neurons in the white matter and the subventricular zone (SVZ). A proportion of newly born neurons within the white matter showed features of OPCs. Interestingly, blunting brain inflammation led to reduced neurogenesis around the demyelination area and in the SVZ. These data suggest that the white matter inflammation creates a conducive environment for the recruitment of newly born neurons. The fact that a sizable fraction of these newly born neurons adopt OPC features suggests that they could contribute to the remyelination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Radtke C, Spies M, Sasaki M, Vogt PM, Kocsis JD (2007) Demyelinating diseases and potential repair strategies. Int J Dev Neurosci 25:149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franklin RJ, Gallo V (2014) The translational biology of remyelination: past, present, and future. Glia 62:1905–1915

    Article  PubMed  Google Scholar 

  3. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  CAS  PubMed  Google Scholar 

  4. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giatti S, Boraso M, Melcangi R, Viviani B (2012) Neuroactive steroids, their metabolites and neuroinflammation. J Mol Endocrinol 49:R125–R134

    Article  CAS  PubMed  Google Scholar 

  6. Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108:1343–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mouihate A (2014) TLR4-mediated brain inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci. doi:10.3389/fncel.2014.00146

    PubMed  PubMed Central  Google Scholar 

  8. Kalakh S, Mouihate A (2015) Promyelinating properties of androstenediol in gliotoxin-induced demyelination in rat corpus callosum. Neuropathol Appl Neurobiol 41:964–982

    Article  CAS  PubMed  Google Scholar 

  9. Miron VE, Franklin RJ (2014) Macrophages and CNS remyelination. J Neurochem 130:165–171

    Article  CAS  PubMed  Google Scholar 

  10. Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK et al (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Perez O (2014) The ventricular-subventricular zone: a source of oligodendrocytes in the adult brain. Front Cell Neurosci. doi:10.3389/fncel.2014.00137

    PubMed  PubMed Central  Google Scholar 

  14. Tatar C, Bessert D, Tse H, Skoff RP (2013) Determinants of central nervous system adult neurogenesis are sex, hormones, mouse strain, age, and brain region. Glia 61:192–209

    Article  PubMed  Google Scholar 

  15. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Baron-Van EA (2008) The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 265:26–31

    Article  CAS  PubMed  Google Scholar 

  16. Mecha M, Feliu A, Carrillo-Salinas FJ, Mestre L, Guaza C (2013) Mobilization of progenitors in the subventricular zone to undergo oligodendrogenesis in the Theiler’s virus model of multiple sclerosis: implications for remyelination at lesions sites. Exp Neurol 250:348–352

    Article  CAS  PubMed  Google Scholar 

  17. Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R et al (2007) Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 104:4694–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  19. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, New York

  20. Levine JM, Reynolds R (1999) Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160:333–347

    Article  CAS  PubMed  Google Scholar 

  21. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  24. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  25. Hodge RD, Nelson BR, Kahoud RJ, Yang R, Mussar KE, Reiner SL, Hevner RF (2012) Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 32:6275–6287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaramillo-Merchan J, Jones J, Ivorra JL, Pastor D, Viso-Leon MC, Armengol JA, Molto MD, Geijo-Barrientos E et al (2013) Mesenchymal stromal-cell transplants induce oligodendrocyte progenitor migration and remyelination in a chronic demyelination model. Cell Death Dis. doi:10.1038/cddis.2013.304

    PubMed  PubMed Central  Google Scholar 

  27. Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ (2009) Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mouihate A, Boisse L, Pittman QJ (2004) A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain. J Neurosci 24:1312–1318

    Article  CAS  PubMed  Google Scholar 

  29. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh J (2012) Orchestrating transcriptional control of adult neurogenesis. Genes Dev 26:1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harauz G, Boggs JM (2013) Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 125:334–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lepousez G, Nissant A, Lledo PM (2015) Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 86:387–401

    Article  CAS  PubMed  Google Scholar 

  33. Cummings DM, Snyder JS, Brewer M, Cameron HA, Belluscio L (2014) Adult neurogenesis is necessary to refine and maintain circuit specificity. J Neurosci 34:13801–13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christie KJ, Turnley AM (2013) Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci. doi:10.3389/fncel.2012.00070

    PubMed  PubMed Central  Google Scholar 

  35. Lindvall O, Kokaia Z (2015) Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a019034

    PubMed  Google Scholar 

  36. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  37. Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor KA, Ming GL, Song H et al (2010) Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 13:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  CAS  PubMed  Google Scholar 

  39. Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38:145–157

    Article  CAS  PubMed  Google Scholar 

  40. Iosif RE, Ahlenius H, Ekdahl CT, Darsalia V, Thored P, Jovinge S, Kokaia Z, Lindvall O (2008) Suppression of stroke-induced progenitor proliferation in adult subventricular zone by tumor necrosis factor receptor 1. J Cereb Blood Flow Metab 28:1574–1587

    Article  CAS  PubMed  Google Scholar 

  41. Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34:1573–1584

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci. doi:10.3389/fnins.2012.00010

    PubMed  PubMed Central  Google Scholar 

  44. Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M (2015) Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 146:48–61

    Article  CAS  PubMed  Google Scholar 

  45. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF et al (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39

    Article  CAS  PubMed  Google Scholar 

  46. Deutsch ER, Espinoza TR, Atif F, Woodall E, Kaylor J, Wright DW (2013) Progesterone’s role in neuroprotection, a review of the evidence. Brain Res 1530:82–105

    Article  CAS  PubMed  Google Scholar 

  47. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sato K (2015) Effects of microglia on neurogenesis. Glia 63:1394–1405

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katsumoto A, Lu H, Miranda AS, Ransohoff RM (2014) Ontogeny and functions of central nervous system macrophages. J Immunol 193:2615–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghoumari AM, Baulieu EE, Schumacher M (2005) Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience 135:47–58

    Article  CAS  PubMed  Google Scholar 

  52. Hussain R, El-Etr M, Gaci O, Rakotomamonjy J, Macklin WB, Kumar N, Sitruk-Ware R, Schumacher M et al (2011) Progesterone and nestorone facilitate axon remyelination: a role for progesterone receptors. Endocrinology 152:3820–3831

    Article  CAS  PubMed  Google Scholar 

  53. Ghoumari AM, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O’Malley BW, Baulieu EE, Schumacher M (2003) Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem 86:848–859

    Article  CAS  PubMed  Google Scholar 

  54. El-Etr M, Rame M, Boucher C, Ghoumari AM, Kumar N, Liere P, Pianos A, Schumacher M et al (2015) Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia 63:104–117

    Article  PubMed  Google Scholar 

  55. Schwartz M, Kipnis J, Rivest S, Prat A (2013) How do immune cells support and shape the brain in health, disease, and aging? J Neurosci 33:17587–17596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Kuwait University Research Grant No. YM11/11 to A.M. Confocal imaging was performed in The Research Unit for Genomics, Proteomics, and Cellomics Sciences supported by Research Project No. SRUL02/13. The authors thank Dr. Willias Masocha for the critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam Mouihate.

Ethics declarations

All experimental procedures were performed in accordance with guidelines on the humane handling of experimental animals as established by the Canadian Council on Animal Care. Experiments performed were approved by the Kuwait University Health Sciences Center Animal Research Ethics committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary data 1

Local distribution of microglia and astrocytes at the demyelination lesion area. Microglia (Iba1+, green) and astrocytes (GFAP+, red) were co-detected in the vicinity of the demyelination lesion. Microglia were mostly found at the center of the lesion in both oil-treated (EB-O) and progesterone administered (EB-Prog) rat groups. However, astrocytes were found both at the center and the edge of the demyelination lesion. Administration of progesterone resulted in reduced number of microglia (left panel). CC: corpus callosum. (GIF 193 kb)

High resolution image (TIFF 1605 kb)

Supplementary data 2

Detection of NeuN and NG2 in the cerebral cortex. Immunofluorescent detection of NeuN+ cells (green), NG2+ cells (red) in the cerebral cortex of both EB-O (upper panel) and EB-Prog (lower panel). No co-localization was observed between NeuN and NG2 stainings in the cerebral cortex of either EB-O or EB-Prog groups. Scale bar =50 μm. CTX: cortex. (GIF 165 kb)

High resolution image (TIFF 1116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakh, S., Mouihate, A. Demyelination-Induced Inflammation Attracts Newly Born Neurons to the White Matter. Mol Neurobiol 54, 5905–5918 (2017). https://doi.org/10.1007/s12035-016-0127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0127-5

Keywords

Navigation