Skip to main content

Advertisement

Log in

Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia; however, available treatments have had limited success. Therefore AD patients are in tremendous need of new pharmacological approaches that may delay or slow the progression of the disease. In addition to the classical neuropathological features, immunological and inflammatory processes are also involved in AD pathogenesis. Naturally occurring compounds, such as Mangifera indica Linn (MGF) extracts have previously been shown to significantly reduce peripheral inflammatory processes. In order to explore the role of MGF in AD central pathology, we have orally treated APP/PS1 mice for 22 weeks. While MGF did not affect amyloid pathology, tau hyperphosphorylation was significantly reduced in the cortex and hippocampus. Also, inflammatory processes, measured by microglia and astrocyte burdens, were diminished in MGF-treated mice. Moreover, neuronal morphological alterations, such as abnormal neurite curvature and dystrophies, highly increased in APP/PS1 mice, were significantly ameliorated by long-term MGF treatment. Reduction of all these pathological features were accompanied by compelling improvements of episodic and spatial memory in APP/PS1 mice treated with MGF. Altogether our data suggest that MGF may provide a useful tool to target different aspects of AD pathology and could lead to more effective future therapeutic or preventive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    Article  PubMed  PubMed Central  Google Scholar 

  2. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ (2003) In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci 23(6):2212–2217

    CAS  PubMed  Google Scholar 

  3. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt R, Hofer E, Bouwman FH et al (2015) EFNS-ENS/EAN Guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. Eur J Neurol 22(6):889–898

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield DA, Koppal T, Subramaniam R, Yatin S (1999) Vitamin E as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: insights into Alzheimer’s disease. Rev Neurosci 10(2):141–149

    Article  CAS  PubMed  Google Scholar 

  6. Cho ES, Jang YJ, Kang NJ et al (2009) Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med 46(10):1319–1327

    Article  CAS  PubMed  Google Scholar 

  7. Bastianetto S, Zheng WH, Quirion R (2000) The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J Neurochem 74(6):2268–2277

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M, Hyman BT, Bacskai BJ (2006) Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol 65(11):1082–1089

    Article  CAS  PubMed  Google Scholar 

  9. Townsend M, Cleary JP, Mehta T et al (2006) Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-beta oligomers. Ann Neurol 60(6):668–676

    Article  CAS  PubMed  Google Scholar 

  10. Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21(2):204–207. doi:10.1016/j.drudis.2015.01.009

  11. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102(4):1095–1104

    Article  CAS  PubMed  Google Scholar 

  12. Gennaro G, Claudino M, Cestari TM et al (2015) Green tea modulates cytokine expression in the periodontium and attenuates alveolar bone resorption in type 1 diabetic rats. PLoS One 10(8), e0134784

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mohajeri M, Sadeghizadeh M, Najafi F, Javan M (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 99:156–167

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Alloza M, Borrelli LA, Hyman BT, Bacskai BJ (2010) Antioxidants have a rapid and long-lasting effect on neuritic abnormalities in APP:PS1 mice. Neurobiol Aging 31(12):2058–2068

    Article  CAS  PubMed  Google Scholar 

  15. Selles AJ, Villa DG, Rastrelli L (2015) Mango polyphenols and its protective effects on diseases associated to oxidative stress. Curr Pharm Biotechnol 16(3):272–280

    Article  PubMed  Google Scholar 

  16. Pal PB, Sinha K, Sil PC (2014) Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFalpha related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PLoS One 9(9), e107220

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jankowsky JL, Slunt HH, Ratovitski T et al (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17(6):157–165

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-Ponce MT, Casas L, Mantell C, de la Ossa EJ M (2015) Use of high pressure techniques to produce Mangifera indica L. leaf extracts enriched in potent antioxidant phenolic compounds. Innovative Food Sci Emerg Technol 29:94–106

    Article  CAS  Google Scholar 

  19. Garrido G, Gonzalez D, Delporte C et al (2001) Analgesic and anti-inflammatory effects of Mangifera indica L. extract (Vimang). Phytother Res 15(1):18–21

    Article  CAS  PubMed  Google Scholar 

  20. Kasbe P, Jangra A, Lahkar M (2015) Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J Trace Elem Med Biol 31:107–112

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX et al (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24(3):516–524

    Article  CAS  PubMed  Google Scholar 

  22. Ramos-Rodriguez JJ, Infante-Garcia C, Galindo-Gonzalez L et al (2016) Increased spontaneous central bleeding and cognition impairment in APP/PS1 mice with poorly controlled diabetes mellitus. Mol Neurobiol 53(4):2685–2697

    Article  CAS  PubMed  Google Scholar 

  23. Dere E, Huston JP, De Souza Silva MA (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Brain Res Protoc 16(1-3):10–19

    Article  PubMed  Google Scholar 

  24. Ramos-Rodriguez JJ, Molina-Gil S, Rey-Brea R, Berrocoso E, Garcia-Alloza M (2013) Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 Mice. PLoS One 8(11), e79947

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D et al (2013) Rapid beta-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol 72(4):272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Amore JD, Kajdasz ST, McLellan ME et al (2003) In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J Neuropathol Exp Neurol 62(2):137–145

    Article  PubMed  Google Scholar 

  27. Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsunaga S, Kishi T, Iwata N (2015) Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol 18(5)

  29. Lannfelt L, Moller C, Basun H et al (2014) Perspectives on future Alzheimer therapies: amyloid-beta protofibrils—a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther 6(2):16

    Article  PubMed  PubMed Central  Google Scholar 

  30. Panza F, Logroscino G, Imbimbo BP, Solfrizzi V (2014) Is there still any hope for amyloid-based immunotherapy for Alzheimer’s disease? Curr Opin Psychiatry 27(2):128–137

    Article  PubMed  Google Scholar 

  31. Sabbagh M, Cummings J (2011) Progressive cholinergic decline in Alzheimer’s Disease: consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology. BMC Neurol 11:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aderibigbe AO, Emudianughe TS, Lawal BA (2001) Evaluation of the antidiabetic action of Mangifera indica in mice. Phytother Res 15(5):456–458

    Article  CAS  PubMed  Google Scholar 

  33. Apontes P, Liu Z, Su K et al (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63(11):3626–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han J, Yi J, Liang F et al (2015) X-3, a mangiferin derivative, stimulates AMP-activated protein kinase and reduces hyperglycemia and obesity in db/db mice. Mol Cell Endocrinol 405C:63–73

    Article  Google Scholar 

  35. Biradar SM, Joshi H, Chheda TK (2012) Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer’s disease. Eur J Pharmacol 683(1-3):140–147

    Article  CAS  PubMed  Google Scholar 

  36. Sabogal-Guaqueta AM, Munoz-Manco JI, Ramirez-Pineda JR et al (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Barroso C, Ricobaraza A, Pascual-Lucas M et al (2013) Tadalafil crosses the blood-brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 64:114–123

    Article  CAS  PubMed  Google Scholar 

  38. Hochgrafe K, Sydow A, Mandelkow EM (2013) Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of Tau pathology. FEBS J 280(18):4371–4381

    Article  PubMed  Google Scholar 

  39. El Khoury J, Toft M, Hickman SE et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13(4):432–438

    Article  PubMed  Google Scholar 

  40. Monsonego A, Imitola J, Zota V, Oida T, Weiner HL (2003) Microglia-mediated nitric oxide cytotoxicity of T cells following amyloid beta-peptide presentation to Th1 cells. J Immunol 171(5):2216–2224

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Alloza M, Ferrara BJ, Dodwell SA et al (2007) A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Dis 28(3):286–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Glat M, Skaat H, Menkes-Caspi N, Margel S, Stern EA (2013) Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnol 11:32

    Article  Google Scholar 

  43. Brendza RP, Bacskai BJ, Cirrito JR et al (2005) Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest 115(2):428–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stern EA, Bacskai BJ, Hickey GA et al (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24(19):4535–4540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding sources: Fundación Eugenio Rodríguez Pascual (2015). Proyectos de Excelencia, Consejería de Economía, Innovación, Ciencia y Empleo Junta de Andalucía (P11-CTS-7847), ISCIII–Subdirección General de Evaluación y Fomento de la Investigación and cofinanced by the European Union (Fondo Europeo de Desarrollo Regional, FEDER) “Una manera de hacer Europa” PI12/00675 (Monica Garcia-Alloza). We thank Ms. Eleanor Pickett and Ms. Daisy Arkell for their careful revision of the manuscript. Authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Garcia-Alloza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infante-Garcia, C., Ramos-Rodriguez, J.J., Delgado-Olmos, I. et al. Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice. Mol Neurobiol 54, 4696–4704 (2017). https://doi.org/10.1007/s12035-016-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0015-z

Keywords

Navigation