Skip to main content
Log in

HDAC3 Is Required for Posterior Lateral Line Development in Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) are involved in multiple developmental processes, but their functions in the development of mechanosensory organs are largely unknown. In the present study, we report the presence of HDAC3 in the zebrafish posterior lateral line primordium and newly deposited neuromasts. We used morpholinos to show that HDAC3 knockdown severely disrupts the development of the posterior lateral line and reduces the numbers of neuromasts and sensory hair cells within these organs. In HDAC3 morphants, we also observed decreased cell proliferation and increased apoptosis, which might lead to these defects. Finally, we show that HDAC3 deficiency results in attenuated Fgf signaling in the migrating primordium. In situ hybridizations indicate aberrant expression patterns of Notch signaling pathway genes in HDAC3 morphants. In addition, inhibition of HDAC3 function diminishes cxcr7b and alters cxcl12a expression in the migrating primordium. Our results indicate that HDAC3 plays a crucial role in regulating posterior lateral line (PLL) formation and provide evidence for epigenetic regulation in auditory organ development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129(3):597–604

    CAS  PubMed  Google Scholar 

  2. Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22. doi:10.1146/annurev.genet.39.073003.105049

    Article  CAS  PubMed  Google Scholar 

  3. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421(2):189–198. doi:10.1002/(Sici)1096-9861(20000529)421:2<189::Aid-Cne5>3.0.Co;2-K

    Article  CAS  PubMed  Google Scholar 

  4. Baker CVH, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232(1):1–61. doi:10.1006/dbio.2001.0156

    Article  CAS  PubMed  Google Scholar 

  5. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389. doi:10.1002/cne.902330307

    Article  CAS  PubMed  Google Scholar 

  6. David NB, Sapede D, Saint-Etienne L, Thisse C, Thisse B, Dambly-Chaudiere C, Rosa FM, Ghysen A (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci U S A 99(25):16297–16302. doi:10.1073/pnas.252339399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Q, Shirabe K, Kuwada JY (2004) Chemokine signaling regulates sensory cell migration in zebrafish. Dev Biol 269(1):123–136. doi:10.1016/j.ydbio.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  8. Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320(5884):1774–1777. doi:10.1126/science.1156547

    Article  CAS  PubMed  Google Scholar 

  9. Lecaudey V, Cakan-Akdogan G, Norton WHJ, Gilmour D (2008) Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135(16):2695–2705. doi:10.1242/Dev.025981

    Article  CAS  PubMed  Google Scholar 

  10. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15(5):749–761. doi:10.1016/j.devcel.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda M, Chitnis AB (2010) Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development 137(20):3477–3487. doi:10.1242/Dev.052761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. doi:10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  13. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25. doi:10.1016/j.molonc.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  14. De Ruijter AJM, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749. doi:10.1042/Bj20021321

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson CA, Barlow AL, Turner BM (1998) Molecular cloning of Drosophila melanogaster cDNAs that encode a novel histone deacetylase dHDAC3. Gene 221(1):127–134

    Article  CAS  PubMed  Google Scholar 

  16. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30(1):61–72. doi:10.1016/j.molcel.2008.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW (2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27(7):1017–1028. doi:10.1038/emboj.2008.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O (2010) Expression of class I histone deacetylases during chick and mouse development. Int J Dev Biol 54(10):1527–1537. doi:10.1387/ijdb.092971cm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Montgomery RL, Potthoff MJ, Haberland M, Qi XX, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R et al (2008) Maintenance of cardiac energy by histone deacetylase 3 metabolism in mice. J Clin Investig 118(11):3588–3597. doi:10.1172/Jci35847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Gene Dev 20(18):2566–2579. doi:10.1001/Gad.1455006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He Y, Mei H, Yu H, Sun S, Ni W, Li H (2014) Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae. Exp Mol Med 46:e94. doi:10.1038/emm.2014.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He Y, Wu J, Mei H, Yu H, Sun S, Shou J, Li H (2014) Histone deacetylase activity is required for embryonic posterior lateral line development. Cell Prolif 47(1):91–104. doi:10.1111/Cpr.12081

    Article  CAS  PubMed  Google Scholar 

  23. Farooq M, Sulochana KN, Pan XF, To JW, Sheng D, Gong ZY, Ge RW (2008) Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol 317(1):336–353. doi:10.1016/j.ydbio.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  24. Aman A, Nguyen M, Piotrowski T (2011) Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol 349(2):470–482. doi:10.1016/j.ydbio.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  25. Laguerre L, Ghysen A, Dambly-Chaudiere C (2009) Mitotic patterns in the migrating lateral line cells of zebrafish embryos. Dev Dyn 238(5):1042–1051. doi:10.1002/dvdy.21938

    Article  PubMed  Google Scholar 

  26. Laguerre L, Soubiran F, Ghysen A, Konig N, Dambly-Chaudiere C (2005) Cell proliferation in the developing lateral line system of zebrafish embryos. Dev Dyn 233(2):466–472. doi:10.1002/dvdy.20343

    Article  PubMed  Google Scholar 

  27. Dambly-Chaudiere C, Cubedo N, Ghysen A (2007) Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7. doi: 10.1186/1471-213x-7-23

  28. Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10(5):673–680. doi:10.1016/j.devcel.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  29. Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17(12):1026–1031. doi:10.1016/j.cub.2007.05.020

    Article  CAS  PubMed  Google Scholar 

  30. Itoh M, Chitnis AB (2001) Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mech Dev 102(1-2):263–266. doi:10.1016/S0925-4773(01)00308-2

    Article  CAS  PubMed  Google Scholar 

  31. Hernandez PP, Olivari FA, Sarrazin AF, Sandoval PC, Allende ML (2007) Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor cell marker Sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal. Dev Neurobiol 67(5):637–654. doi:10.1002/Dneu.20386

    Article  CAS  PubMed  Google Scholar 

  32. Gompel N, Cubedo N, Thisse C, Thisse B, Dambly-Chaudiere C, Ghysen A (2001) Pattern formation in the lateral line of zebrafish. Mech Dev 105(1-2):69–77. doi:10.1016/S0925-4773(01)00382-3

    Article  CAS  PubMed  Google Scholar 

  33. Ogun O, Zallocchi M (2014) Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly. J Cell Biol 207(3):375–391. doi:10.1083/jcb.201404016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He Y, Yu H, Cai C, Sun S, Chai R, Li H (2014) Inhibition of H3K4me2 demethylation protects auditory hair cells from neomycin-induced apoptosis. Mol Neurobiol. doi:10.1007/s12035-014-8841-3

    Google Scholar 

  35. He Y, Yu H, Sun S, Wang Y, Liu I, Chen Z, Li H (2013) Trans-2-phenylcyclopropylamine regulates zebrafish lateral line neuromast development mediated by depression of LSD1 activity. Int J Dev Biol 57(5):365–373. doi:10.1387/ijdb.120227hl

    Article  CAS  PubMed  Google Scholar 

  36. Almouzni G, Khochbin S, Dimitrov S, Wolffe AP (1994) Histone acetylation influences both gene-expression and development of xenopus-laevis. Dev Biol 165(2):654–669. doi:10.1006/dbio.1994.1283

    Article  CAS  PubMed  Google Scholar 

  37. Cunliffe VT (2004) Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131(12):2983–2995. doi:10.1242/Dev.01166

    Article  CAS  PubMed  Google Scholar 

  38. Pillai R, Coverdale LE, Dubey G, Martin CC (2004) Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn 231(3):647–654. doi:10.1002/Dvdy.20168

    Article  CAS  PubMed  Google Scholar 

  39. Stadler JA, Shkumatava A, Norton WHJ, Rau MJ, Geisler R, Fischer S, Neumann CJ (2005) Histone deacetylase 1 is required for cell cycle exit and differentiation in the zebrafish retina. Dev Dyn 233(3):883–889. doi:10.1002/Dvdy.20427

    Article  CAS  PubMed  Google Scholar 

  40. He YZ, Cai CF, Tang DM, Sun S, Li HW (2014) Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 8. doi: 10.3389/Fncel.2014.00382

  41. Yu H, Lin Q, Wang Y, He Y, Fu S, Jiang H, Yu Y, Sun S, Chen Y, Shou J, Li H (2013) Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 4. doi: 10.1038/cddis.2013.28

  42. Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294(2):303–351. doi:10.1016/j.ydbio.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  43. Chitnis AB, Nogare DD, Matsuda M (2012) Building the posterior lateral line system in zebrafish. Dev Neurobiol 72(3):234–255. doi:10.1002/dneu.20962

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ghysen A, Dambly-Chaudiere C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14(1):67–73. doi:10.1016/j.conb.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  45. Tabata T, Kokura K, ten Dijke P, Ishii S (2009) Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 14(1):17–28. doi:10.1111/j.1365-2443.2008.01246.x

    Article  CAS  PubMed  Google Scholar 

  46. Yoon HG, Chan DW, Huang ZQ, Li JW, Fondell JD, Qin J, Wong JM (2003) Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J 22(6):1336–1346. doi:10.1093/Emboj/Cdg120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gloire G, Horion J, El Mjiyad N, Bex F, Chariot A, Dejardin E, Piette J (2007) Promoter-dependent effect of IKKalpha on NF-kappaB/p65 DNA binding. J Biol Chem 282(29):21308–21318. doi:10.1074/jbc.M610728200

    Article  CAS  PubMed  Google Scholar 

  48. Xia Y, Wang J, Liu TJ, Yung WK, Hunter T, Lu Z (2007) c-Jun downregulation by HDAC3-dependent transcriptional repression promotes osmotic stress-induced cell apoptosis. Mol Cell 25(2):219–232. doi:10.1016/j.molcel.2007.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Escaffit F, Vaute O, Chevillard-Briet M, Segui B, Takami Y, Nakayama T, Trouche D (2007) Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression. Mol Cell Biol 27(2):554–567. doi:10.1128/MCB.00869-06

    Article  CAS  PubMed  Google Scholar 

  50. Takami Y, Nakayama T (2000) N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275(21):16191–16201. doi:10.1074/jbc.M908066199

    Article  CAS  PubMed  Google Scholar 

  51. Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, Arango D, Velcich A et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281(19):13548–13558. doi:10.1074/jbc.M510023200

    Article  CAS  PubMed  Google Scholar 

  52. Narita N, Fujieda S, Tokuriki M, Takahashi N, Tsuzuki H, Ohtsubo T, Matsumoto H (2005) Inhibition of histone deacetylase 3 stimulates apoptosis induced by heat shock under acidic conditions in human maxillary cancer. Oncogene 24(49):7346–7354. doi:10.1038/sj.onc.1208879

    Article  CAS  PubMed  Google Scholar 

  53. Choi HK, Choi Y, Kang H, Lim EJ, Park SY, Lee HS, Park JM, Moon J et al (2015) PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum Mol Genet 24(4):1127–1141. doi:10.1093/hmg/ddu526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dong Liu and Min Yu for their technical assistance and Yalin Huang for help with the confocal microscope. This work was supported by grants from the Major State Basic Research Development Program of China (973 Program) (2011CB504506, 2015CB965000), the National Natural Science Foundation of China (nos. 81230019, 81470687, 81470692, 81500784), the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT1010), the Jiangsu Province Natural Science Foundation, (BK20140620), the Specialized Research Fund for the Doctor Program of Higher Education (20120071110077), the Fundamental Research Funds for the Central Universities (2242014R30022, NO2013WSN085), the Construction Program of Shanghai Committee of Science and Technology (12DZ2251700), the Major Program of Shanghai Committee of Science and Technology (11441901000), and the China Postdoctoral Science Foundation Funded Project (2014 M551328).

Conflict of Interest

The authors declare that they have no competing interests

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengmin Wang or Huawei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Figure 1

a The HDAC3 protein level in HDAC3-MO-injected embryos is drastically lower than control embryos at 24 hpf. b Gross phenotypic morphology of a control and an HDAC3 morphant embryo. The HDAC3 morphant at 48 hpf shows normal body morphology. Scale bar 200 μm. (DOCX 262 kb)

Supplement Figure 2

RNA in situ hybridization of Wnt/β-catenin (axin2 and lef1) signaling components in the PLL primordia of controls (ConMO; left panels) and HDAC3 morphants (HDAC3-MO; right panels) between 28 and 30 hpf. Expression of axin2 (a and b) and lef1 (c and d) was similar in both controls and HDAC3 morphant embryos. All images show lateral views; anterior is on the left. The primordium is outlined with a dashed line. (DOCX 414 kb)

Supplemental Figure 3

The expression pattern of dkk1 in the PLL primordia. RNA in situ hybridization of dkk1 in the PLL primordia of control (ConMO), bFGF-untreated HDAC3 morphant (HDAC3-MO), bFGF-treated HDAC3 morphant (HDAC3-MO+bFGF) and bFGF-treated control (ConMO+bFGF) between 28 and 30 hpf. HDAC3 knockdown caused a reduction of dkk1 expression, which was rescued by treatment with bFGF. (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, Z., Sun, S. et al. HDAC3 Is Required for Posterior Lateral Line Development in Zebrafish. Mol Neurobiol 53, 5103–5117 (2016). https://doi.org/10.1007/s12035-015-9433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9433-6

Keywords

Navigation