Skip to main content
Log in

Loss of Diacylglycerol Kinase-Ζ Inhibits Cell Proliferation and Survival in Human Gliomas

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diacylglycerol kinases ζ (DGKζ) is a critical lipid kinase which is involved in phosphatidic acid (PA) generation via diacylglycerol (DAG) phosphorylation. DGKζ is highly expressed in central nervous system and essential for brain development. Studies have indicated that DGKζ is associated with colon cancer invasion and metastasis. However, the involvement of DGKζ in human glioma development remains elusive. Here, we explored the impact and possible mechanisms of DGKζ knockdown on the proliferation and survival of glioma cells. The relationship between DGKζ expression status and human glioma stages was explored in 111 specimens of human gliomas via immunohistochemistry technology. Then the impact of DGKζ on cell proliferation, cell cycle, survival, and colony formation ability was determined in U-87 MG glioma cell lines via lentiviral-mediated small interfering (shRNA) strategy. The influence of DGKζ knockdown on global gene expression in U-87 MGglioma cell lines was further analyzed by microarray platform to reveal the possible molecular mechanisms underlying DGKζ-mediated glioma development and progression. Immunohistochemistry analysis revealed that DGKζ expression is positively correlated with human gliomagrade. Lentiviral-mediated small interfering (shRNA) strategyefficiently reduced DGKζ expression and DGKζ knockdown impaired cell proliferation, inhibited colony formation ability, and induced cell cycle arrest and cell apoptosis in U-87 MG glioma cells. Finally, microarray analysis revealed that multiple cancer-associated pathways and oncogenes were regulated by DGKζ knockdown, which provides insights into underlying mechansims of DGKζ-associated glioma development and progression. Our results established the positive correlation between DGKζ expression and gliomagrade. Furthermore, DGKζ knockdown in human glioma cell lines U-87 MG impaired cell proliferation, inhibited colony formation ability, and induced cell cycle arrest and apoptosis which microarray analysis showed that DGKζ knockdown interrupted multiple oncogenes and cancer-associated pathways. Taken together, we provided confidential evidence for the causal role of DGKζ in glioma development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology 15(Suppl 2):ii1–56. doi:10.1093/neuonc/not151

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205(12):613–621. doi:10.1016/j.cancergen.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. doi:10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  4. Ohgaki H (2009) Epidemiology of brain tumors. Methods Mol Biol 472:323–342. doi:10.1007/978-1-60327-492-0_14

    Article  CAS  PubMed  Google Scholar 

  5. Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, Fisher J (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16(8):2443–2449. doi:10.1158/1078-0432.CCR-09-3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi:10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foster DA (2007) Regulation of mTOR by phosphatidic acid? Cancer Res 67(1):1–4. doi:10.1158/0008-5472.CAN-06-3016

    Article  CAS  PubMed  Google Scholar 

  8. Hatton N, Lintz E, Mahankali M, Henkels K (2015) Phosphatidic acid (PA) increases EGF receptor (EGFR) expression by stabilizing mRNA, inhibiting RNAse-A, and by inhibiting lysosomal and proteasomal degradation of the internalized EGFR. Mol Cell Biol. doi:10.1128/MCB.00286-15

    PubMed  PubMed Central  Google Scholar 

  9. Foster DA, Salloum D, Menon D, Frias MA (2014) Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem 289(33):22583–22588. doi:10.1074/jbc.R114.566091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shirai Y, Saito N (2014) Diacylglycerol kinase as a possible therapeutic target for neuronal diseases. J Biomed Sci 7:21–28. doi:10.1186/1423-0127-21-28

    Google Scholar 

  11. Rincon E, Gharbi SI, Santos-Mendoza T, Merida I (2012) Diacylglycerol kinase zeta: at the crossroads of lipid signaling and protein complex organization. Prog Lipid Res 51(1):1–10. doi:10.1016/j.plipres.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R et al (2013) Diacylglycerol kinase α is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 3(7):782–97. doi:10.1158/2159-8290.CD-12-0215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kefas B, Floyd DH, Comeau L, Frisbee A, Dominguez C, Dipierro CG, Guessous F, Abounader R et al (2013) A miR-297/hypoxia/DGK-α axis regulating glioblastoma survival. Neuro Oncol 15(12):1652–63. doi:10.1093/neuonc/not118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishisaka M, Hara H (2014) The roles of diacylglycerol kinases in the central nervous system: review of genetic studies in mice. J Pharmacol Sci 124(3):336–343

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK et al (2013) Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. J Cell Sci 126(Pt 13):2785–97. doi:10.1242/jcs.118711

    Article  CAS  PubMed  Google Scholar 

  16. Okada M, Hozumi Y, Tanaka T, Suzuki Y, Yanagida M, Araki Y, Evangelisti C, Yagisawa H et al (2012) DGKzeta is degraded through the cytoplasmic ubiquitin-proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. Cell Signal 24(8):1573–1582. doi:10.1016/j.cellsig.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  17. Cai K, Mulatz K, Ard R, Nguyen T, Gee SH (2014) Increased diacylglycerol kinase zeta expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion. BMC Cancer 14:208. doi:10.1186/1471-2407-14-208

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haapa-Paananen S, Kiviluoto S, Waltari M, Puputti M, Mpindi JP, Kohonen P, Tynninen O, Haapasalo H et al (2012) HES6 gene is selectively overexpressed in glioma and represents an important transcriptional regulator of glioma proliferation. Oncogene 31(10):1299–1310. doi:10.1038/onc.2011.316

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS et al (2008) Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 105(12):4826–4831. doi:10.1073/pnas.0712365105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Xie F, Zhang L, Jiang WG (2010) iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway. BMC Cancer 10:694. doi:10.1186/1471-2407-10-694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, Nishikawa T, Shuno Y et al (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10:370. doi:10.1186/1471-2407-10-370

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11(5):R53. doi:10.1186/gb-2010-11-5-r53

    Article  PubMed  PubMed Central  Google Scholar 

  23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Enderling H, Hahnfeldt P (2011) Cancer stem cells in solid tumors: is ‘evading apoptosis’ a hallmark of cancer? Prog Biophys Mol Biol 106(2):391–399. doi:10.1016/j.pbiomolbio.2011.03.007

    Article  PubMed  Google Scholar 

  26. Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23(12):620–633. doi:10.1016/j.tcb.2013.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  27. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7(6):504–516. doi:10.1038/nrd2530

    Article  CAS  PubMed  Google Scholar 

  28. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    Article  CAS  PubMed  Google Scholar 

  29. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362(6423):857–860. doi:10.1038/362857a0

    Article  CAS  PubMed  Google Scholar 

  30. Hozumi Y, Ito T, Nakano T, Nakagawa T, Aoyagi M, Kondo H, Goto K (2003) Nuclear localization of diacylglycerol kinase zeta in neurons. Eur J Neurosci 18(6):1448–57. doi:10.1046/j.1460-9568.2003.02871.x

    Article  PubMed  Google Scholar 

  31. Evangelisti C, Tazzari PL, Riccio M, Fiume R, Hozumi Y, Fala F, Goto K, Manzoli L et al (2007) Nuclear diacylglycerol kinase-zeta is a negative regulator of cell cycle progression in C2C12 mouse myoblasts. FASEB J 21(12):3297–3307. doi:10.1096/fj.07-8336com

    Article  CAS  PubMed  Google Scholar 

  32. Topham MK, Bunting M, Zimmerman GA, McIntyre TM, Blackshear PJ, Prescott SM (1998) Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature 394(6694):697–700. doi:10.1038/29337

    Article  CAS  PubMed  Google Scholar 

  33. Evangelisti C, Gaboardi GC, Billi AM, Ognibene A, Goto K, Tazzari PL, McCubrey JA, Martelli AM (2010) Identification of a functional nuclear export sequence in diacylglycerol kinase-zeta. Cell Cycle 9(2):384–388

    Article  CAS  PubMed  Google Scholar 

  34. Evangelisti C, Astolfi A, Gaboardi GC, Tazzari P, Pession A, Goto K, Martelli AM (2009) TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-zeta-dependent cell cycle arrest. Cell Signal 21(5):801–809

    Article  CAS  PubMed  Google Scholar 

  35. Rincón E, Santos T, Avila-Flores A, Albar JP, Lalioti V, Lei C, Hong W, Mérida I (2007) Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: new diacylglycerol kinase roles in endocytic recycling. Mol Cell Proteomics 6(6):1073–87

    Article  PubMed  Google Scholar 

  36. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8(11):835–850. doi:10.1038/nrc2521

    Article  CAS  PubMed  Google Scholar 

  37. Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23(21):4776–4789. doi:10.1200/JCO.2005.05.081

    Article  CAS  PubMed  Google Scholar 

  38. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, Meyuhas O, Shokat KM et al (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17(3):249–261. doi:10.1016/j.ccr.2010.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897. doi:10.1038/nrc1738

    Article  CAS  PubMed  Google Scholar 

  40. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5(7):505–515. doi:10.1038/nrc1647

    Article  CAS  PubMed  Google Scholar 

  41. Maguire M, Nield PC, Devling T, Jenkins RE, Park BK, Polański R, Vlatković N, Boyd MT (2008) MDM2 regulates dihydrofolate reductase activity through monoubiquitination. Cancer Res 68(9):3232–3242. doi:10.1158/0008-5472.CAN-07-5271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turbin DA, Cheang MC, Bajdik CD, Gelmon KA, Yorida E, De Luca A, Nielsen TO, Huntsman DG et al (2006) MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol 19(1):69–74. doi:10.1038/modpathol.3800484

    Article  CAS  PubMed  Google Scholar 

  43. Carroll VA, Ashcroft M (2008) Regulation of angiogenic factors by HDM2 in renal cell carcinoma. Cancer Res 68(2):545–552. doi:10.1158/0008-5472.CAN-06-4738

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwen Zhang.

Additional information

Co-first authors: Jinfu Diao and Chunyong Wu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, J., Wu, C., Zhang, J. et al. Loss of Diacylglycerol Kinase-Ζ Inhibits Cell Proliferation and Survival in Human Gliomas. Mol Neurobiol 53, 5425–5435 (2016). https://doi.org/10.1007/s12035-015-9419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9419-4

Keywords

Navigation